Advertisement

Ormiscodes amphimone Outbreak Frequency Increased Since 2000 in Subantarctic Nothofagus pumilio Forests of Chilean Patagonia

  • Álvaro G. GutiérrezEmail author
  • Roberto O. Chávez
  • Javier A. Domínguez-Concha
  • Stephanie Gibson-Carpintero
  • Ignacia P. Guerrero
  • Ronald Rocco
  • Vinci D. Urra
  • Sergio A. Estay
Chapter
  • 23 Downloads

Abstract

Insect outbreaks are among the largest disturbance affecting forest health, and as a consequence of global warming, their frequency can increase and their impact becomes more severe. In the southern tip of South America, massive outbreaks of the native moth Ormiscodes amphimone (Lepidoptera: Hemileucinae) have defoliated large areas of subantarctic Nothofagus pumilio forests. In 2015, the largest Ormiscodes defoliation was documented in the Southern Hemisphere in the valley of El Furioso river (Aysén Region, Chile, 46.8°S). Here, we combined tree-ring and remote sensing analysis to understand the impact of Ormiscodes outbreaks in the N. pumilio forests of this valley. We used MODIS to calculate the Enhanced Vegetation Index (EVI) to detect defoliations and to sample areas where defoliation anomalies were highly frequent (>5 anomalies) and infrequent (<5 anomalies). We developed tree-ring chronologies for each of these areas, and using a hierarchical approach, we reconstructed Ormiscodes outbreaks since 1900 in the valley. According to the EVI anomalies analysis, other outbreak events were evident in 2008 and 2011, but smaller in spatial extent than the 2015 outbreak. Using a tree-ring analysis, we confirmed these outbreaks and found that they have increased in frequency during the last decade, with four events since 2000 compared to three events between 1949 and 2000. Prior to 1949, we did not find a discernible growth or anatomical pattern that could be inferred as an outbreak event. An unprecedented, strong reduction in radial growth was evident since 2000 in the host chronology due to Ormiscodes defoliation closely resembling the steady increase in monthly maximum temperature in the study area. The patterns documented here affecting a natural forest by a native insect species inform on how climate change is disrupting natural biotic interactions, with consequences we do not fully understand on forest dynamics.

Keywords

Forest defoliator Tree-ring analysis Subantartic forests Dendrochronology Disturbances 

Notes

Acknowledgments

We thank the owners who allowed access to their lands at El Furioso valley. We specially thank Félix “Tomato” Avilez, Esteban Arias, and Victor Olivares for their support during fieldwork. Funding was provided by Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT Grant 1160370. Authors contributions: SAE, ROCh, and AGG conceived research; ROCh, RR, and SAE conducted remote sensing analysis; VDU, IPG, and SGC conducted tree-ring analysis; JAD was in charge of the logistics and access to forests; AGG and SGC conducted statistical analyses. AGG wrote the manuscript. All authors contributed, read, and approved the manuscript.

References

  1. Álvarez C, Veblen TT, Christie DA et al (2015) Relationships between climate variability and radial growth of Nothofagus pumilio near altitudinal treeline in the Andes of northern Patagonia, Chile. For Ecol Manag 342:112–121CrossRefGoogle Scholar
  2. Anees A, Olivier JC, O’Rielly M et al (2013). Detecting beetle infestations in pine forests using MODIS NDVI time-series data. In: 2013 IEEE international geoscience and remote sensing symposium—IGARSS, pp 3329–3332Google Scholar
  3. Angulo AO, Lemaire C, Olivares TS (2004) Catálogo crítico e ilustrado de las especies de la familia Saturniidae en Chile (Lepidoptera: Saturniidae). Gayana (Concepción) 68(1):20–42CrossRefGoogle Scholar
  4. Aravena JC, Lara A, Wolodarsky-Franke A et al (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Rev Chil Hist Nat 75(2):361–376Google Scholar
  5. Artigas JN (1972) Ritmos poblacionales de Lepidópteros de interés agrícola. Bol Soc Biol Concepc 45:5–94Google Scholar
  6. Baldini A, Pancel L (2002) Agentes de daño en el bosque nativo. Editorial Universitaria, Santiago de ChileGoogle Scholar
  7. Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8(1):1–16CrossRefGoogle Scholar
  8. Bauerle P, Rutherford P, Lanfranco D (1997) Defoliadores de roble (Nothofagus obliqua), raulí (N. alpina), coigüe (N. dombeyi) y lenga (N. pumilio). Bosque (Valdivia) 18(2):97–107CrossRefGoogle Scholar
  9. Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28(4):251–258CrossRefGoogle Scholar
  10. Chávez RO, Rocco R, Gutiérrez ÁG et al (2019) A self-calibrated non-parametric time series analysis approach for assessing insect defoliation of broad-leaved deciduous Nothofagus pumilio forests. Remote Sens 11(2):204CrossRefGoogle Scholar
  11. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, DordrechtGoogle Scholar
  12. de Beurs KM, Townsend PA (2008) Estimating the effect of gypsy moth defoliation using MODIS. Remote Sens Environ 112(10):3983–3990CrossRefGoogle Scholar
  13. Estay SA, Chávez RO (2018) npphen: an R-package for non-parametric reconstruction of vegetation phenology and anomaly detection using remote sensing. BioRxiv 301143Google Scholar
  14. Estay SA, Chávez RO, Rocco R et al (2019) Quantifying massive outbreaks of the defoliator moth Ormiscodes amphimone in deciduous Nothofagus-dominated southern forests using remote sensing time series analysis. J Appl Entomol 143(7):787–796CrossRefGoogle Scholar
  15. Fajardo A, Gazol A, Mayr C et al (2019) Recent decadal drought reverts warming-triggered growth enhancement in contrasting climates in the southern Andes tree line. J Biogeogr 46(7):1367–1379Google Scholar
  16. Fritts HC (1976) Tree rings and climate. Academic, New YorkGoogle Scholar
  17. Garibaldi LA, Kitzberger T, Ruggiero A (2011) Latitudinal decrease in folivory within Nothofagus pumilio forests: dual effect of climate on insect density and leaf traits? Glob Ecol Biogeogr 20(4):609–619CrossRefGoogle Scholar
  18. Garreaud RD (2018) Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Clim Res 74(3):217–229CrossRefGoogle Scholar
  19. Gärtner H, Nievergelt D (2010) The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28(2):85–92CrossRefGoogle Scholar
  20. Haynes KJ, Allstadt AJ, Klimetzek D (2014) Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Glob Chang Biol 20(6):2004–2018PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hildebrand-Vogel R, Godoy R, Vogel A (1990) Subantarctic-Andean Nothofagus pumilio forests. Vegetatio 89(1):55–68CrossRefGoogle Scholar
  22. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:51–67Google Scholar
  23. Hosking GP, Hutcheson JA (1988) Mountain beech (Nothofagus solandri var. Cliffortioides) decline in the Kaweka Range, North Island, New Zealand. N Z J Bot 26(3):393–400CrossRefGoogle Scholar
  24. Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213CrossRefGoogle Scholar
  25. Lara A, Aravena JC, Villalba R et al (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Can J For Res 31(6):925–936CrossRefGoogle Scholar
  26. Loch AD, Floyd RB (2001) Insect pests of Tasmanian blue gum, Eucalyptus globulus globulus, in south-western Australia: history, current perspectives and future prospects. Austral Ecol 26(5):458–466CrossRefGoogle Scholar
  27. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693CrossRefGoogle Scholar
  28. Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349(6250):823–826PubMedCrossRefPubMedCentralGoogle Scholar
  29. Milligan RH (1974) Insects damaging beech (Nothofagus) forests. Proc N Z Ecol Soc 21:32–40Google Scholar
  30. Moreira-Muñoz A (2011) Plant geography of Chile. Springer, DordrechtCrossRefGoogle Scholar
  31. Olivares-Contreras VA, Mattar C, Gutiérrez AG et al (2019) Warming trends in Patagonian subantartic forest. Int J Appl Earth Obs Geoinf 76:51–65CrossRefGoogle Scholar
  32. Paritsis J, Veblen TT (2011) Dendroecological analysis of defoliator outbreaks on Nothofagus pumilio and their relation to climate variability in the Patagonian Andes. Glob Chang Biol 17(1):239–253CrossRefGoogle Scholar
  33. Paritsis J, Veblen TT, Kitzberger T (2009) Assessing dendroecological methods to reconstruct defoliator outbreaks on Nothofagus pumilio in northwestern Patagonia, Argentina. Can J For Res 39(9):1617–1629CrossRefGoogle Scholar
  34. Piper FI, Fajardo A (2014) Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J Ecol 102(5):1101–1111CrossRefGoogle Scholar
  35. Piper FI, Gundale MJ, Fajardo A (2015) Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species. Ann Bot 115(7):1093–1103PubMedPubMedCentralCrossRefGoogle Scholar
  36. Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Curr For Rep 4(2):35–50Google Scholar
  37. Richman MB (1986) Rotation of principal components. J Climatol 6(3):293–335CrossRefGoogle Scholar
  38. Rodríguez-Catón M, Villalba R, Morales M et al (2016) Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(7):e01390CrossRefGoogle Scholar
  39. Rosenblüth B, Fuenzalida HA, Aceituno P (1997) Recent temperature variations in Southern South America. Int J Climatol 17(1):67–85CrossRefGoogle Scholar
  40. Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, ArizonaGoogle Scholar
  41. Schweingruber FH (1996) Tree rings and environment dendroecology. Paul Haupt, BirmensdorfGoogle Scholar
  42. Stokes MA, Smiley TL (1996) An introduction to tree-ring dating. University of Arizona Press, TucsonGoogle Scholar
  43. Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349(6250):814–818PubMedCrossRefPubMedCentralGoogle Scholar
  44. Veblen TT, Hill RS, Read J (1996) Ecology and biogeography of Nothofagus forests. Yale University Press, New HavenGoogle Scholar
  45. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  46. Verbesselt J, Hyndman R, Newnham G et al (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114(1):106–115CrossRefGoogle Scholar
  47. Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the Southern Andes: 20th-century variations in the context of the past 400 years. In: Diaz HF (ed) Climate variability and change in high elevation regions: past, present & future. Advances in global change research, vol 15. Springer, Dordrecht, pp 177–232Google Scholar
  48. Weed AS, Ayres MP, Hicke JA (2013) Consequences of climate change for biotic disturbances in North American forests. Ecol Monogr 83(4):441–470CrossRefGoogle Scholar
  49. Zang C, Biondi F (2013) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74CrossRefGoogle Scholar
  50. Zhang X, Friedl MA, Schaaf CB (2006) Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements. J Geophys Res Biogeo 111: G04017  https://doi.org/10.1029/2006JG000217
  51. Zhang X, Tan B, Yu Y (2014) Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010. Int J Biometeorol 58(4):547–564PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Álvaro G. Gutiérrez
    • 1
    Email author
  • Roberto O. Chávez
    • 2
  • Javier A. Domínguez-Concha
    • 1
  • Stephanie Gibson-Carpintero
    • 1
  • Ignacia P. Guerrero
    • 1
  • Ronald Rocco
    • 2
  • Vinci D. Urra
    • 1
  • Sergio A. Estay
    • 3
    • 4
  1. 1.Facultad de Ciencias Agronómicas, Departamento de Ciencias Ambientales y Recursos Naturales RenovablesUniversidad de ChileSantiagoChile
  2. 2.Laboratorio de Geo-Información y Percepción RemotaInstituto de Geografía, Pontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de ChileValdiviaChile
  4. 4.Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations