Advertisement

Biological Control of Forest Pests in Uruguay

  • Gonzalo MartínezEmail author
Chapter
  • 26 Downloads

Abstract

Commercial tree plantations cover around a million ha in Uruguay, mostly with stands of eucalypt and pine trees. Uruguayan forestry was free of serious insect pest until the end of the twentieth century. Beginning in the 1990s, both forestry area and international trade experienced an exponential growth, followed by an increase of invasive insect records. More than half of the pests currently affecting Eucalyptus entered the country after 1995. The use of pesticides is greatly restricted, provided around 90% of the plantations are under FSC and/or PEFC certification schemes. Hence, the Uruguayan forestry has relied mainly on silvicultural and biological control to suppress insect pest populations. Biological control for forest insect pests in Uruguay can be tracked back to 1941. Currently, biological control with entomophagous or entomopathogenic organisms has been, or is currently being, implemented for eight insect pests in plantations in Uruguay. More than five parasitoid wasps and a nematode have been released and installed in the field. There are also at least two cases of introduction of entomophagous organisms simultaneously with the pest. I discuss the future of biological control in Uruguay, focusing on the advantages it possesses and the challenges it faces under the current pest status.

Keywords

Parasitoids Entomatopathogenic organisms Pest management Pinus spp. Eucalyptus spp. 

Notes

Acknowledgements

The author wants to thank the collaboration of the representatives of the CECOPE, providing public information and private reports.

References

  1. Abreo E, Simeto S, Corallo B, Martínez G, Lupo S, Altier N (2019) Dual selection of Beauveria bassiana strains and complex substrate media for the massive production of submerged propagules with activity against the eucalyptus bronze bug Thaumastocoris peregrinus. Biocontrol Sci Technol 29(6):533–546.  https://doi.org/10.1080/09583157.2019.1566952CrossRefGoogle Scholar
  2. Anderson C, Low-Choy S, Whittle P, Taylor S, Gambley C, Smith L et al (2017) Australian plant biosecurity surveillance systems. Crop Prot 100:8–20.  https://doi.org/10.1016/j.cropro.2017.05.023CrossRefGoogle Scholar
  3. Augustin S, Boonham N, De Kogel WJ, Donner P, Faccoli M, Lees DC et al (2012) A review of pest surveillance techniques for detecting quarantine pests in Europe. EPPO Bull 42(3):515–551.  https://doi.org/10.1111/epp.2600CrossRefGoogle Scholar
  4. Balmelli G, Marroni V, Altier N, García R (2004) Potencial del mejoramiento genético para el manejo de enfermedades en Eucalyptus globulus, (Núm. 174). http://www.inia.uy/Publicaciones/Documentos%20compartidos/15630021107132338.pdf
  5. Balmelli G, Martínez G, Simeto S (2008) Desarrollo de propuestas de investigación tendientes a la solución de los principales problemas sanitarios de las plantaciones forestales (Informe final Núm. FO_03; p 25). Instituto Nacional de Investigación Agropecuaria, TacuarembóGoogle Scholar
  6. Balmelli G, Resquin F, Simeto S, Torres D, Núñez P, Rodríguez F, González W (2014a) Variabilidad genética en susceptibilidad a Teratosphaeria pseudoeucalypti en Eucaliptos colorados. VI Jornada Técnica de Protección Forestal. 1st edn. Serie Técnica. INIA, Tacuarembó, pp 85–91. http://www.ainfo.inia.uy/digital/bitstream/item/3429/1/ST-213-Cap-9.pdf
  7. Balmelli G, Simeto S, Marroni V, Altier N, Diez JJ (2014b) Genetic variation for resistance to Mycosphaerella leaf disease and Eucalyptus rust on Eucalyptus globulus in Uruguay. Australas Plant Pathol 43(1):97–107.  https://doi.org/10.1007/s13313-013-0254-7CrossRefGoogle Scholar
  8. Barratt BIP, Moran VC, Bigler F, van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63(1):155–167.  https://doi.org/10.1007/s10526-017-9831-yCrossRefGoogle Scholar
  9. Battisti A, Stastny M, Netherer S, Robinet C, Schopf A, Roques A, Larsson S (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol Appl 15(6):2084–2096.  https://doi.org/10.1890/04-1903CrossRefGoogle Scholar
  10. Bentancourt CM, Scatoni IB (2001) Enemigos naturales. Manual ilustrado para la agricultura y la forestación. Facultad de Agronomía—Ed. Agropecuaria Hemisferio Sur, MontevideoGoogle Scholar
  11. Bettucci L, Lupo S, Sánchez A (2006 diciembre) Control microbiano de enfermedades y plagas forestales. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 30:19–24Google Scholar
  12. Bianchi M (2004) Hallazgo de un nematodo parásito de Phoracantha recurva Newman, 1842 y Phoracantha semipunctata Fabricius, 1775 (Coleoptera: Cerambycidae) en el Uruguay. Agrociencia VIII(1):85–88Google Scholar
  13. Bianchi M (2008 febrero 20) Personal interview [Recorded]Google Scholar
  14. Bianchi M, Sánchez A (1999a). Phoracantha recurva Newman y Phoracantha semipunctata (Fabricius). En Bentancourt CM, Scatoni IB (ed) Guía de insectos y ácaros de importancia agrícola y forestal en el Uruguay. FA.PREDEG.GTZ, Montevideo, p 69
  15. Bianchi M, Sánchez A (1999b) Taladro de los eucaliptos. Uruguay Forestal 20:18–19Google Scholar
  16. Bianchi M, Sánchez A (2004) Glycaspis brimblecombei Moore (Homoptera: Psyllidae). Un nuevo psílido asociado a Eucalyptus sp. Detectado recientemente en Brasil y Chile. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 24:8–10Google Scholar
  17. Bianchi M, Martínez G, Sánchez A (2008) Plan piloto de monitoreo para Thaumastocoris peregrinus en plantaciones de Eucalyptus sp. En Uruguay. [Informe para el CECOPE]. Comité Ejecutivo de Coordinación en materia de plagas y enfermedades que afectan plantaciones forestales (CECOPE), Montevideo, p 7Google Scholar
  18. Bilodeau P, Roe AD, Bilodeau G, Blackburn GS, Cui M, Cusson M et al (2019) Biosurveillance of forest insects: part II—adoption of genomic tools by end user communities and barriers to integration. J Pest Sci 92(1):71–82.  https://doi.org/10.1007/s10340-018-1001-1CrossRefGoogle Scholar
  19. Boavida C, Garcia A, Branco M (2016) How effective is Psyllaephagus bliteus (Hymenoptera: Encyrtidae) in controlling Glycaspis brimblecombei (Hemiptera: Psylloidea)? Biol Control 99:1–7.  https://doi.org/10.1016/j.biocontrol.2016.04.003CrossRefGoogle Scholar
  20. Boscana M, Boragno L (2018) Actualidad del sector forestal. In: Souto G, Tambler A, Bervejillo J (eds) Anuario OPYPA 2018. OPYPA-MGAP, Montevideo, pp 229–239Google Scholar
  21. Bouwer MC, Slippers B, Wingfield MJ, Rohwer ER (2014) Chemical signatures affecting host choice in the Eucalyptus herbivore, Gonipterus sp. (Curculionidae: Coleoptera). Arthropod Plant Interact 8(5):439–451.  https://doi.org/10.1007/s11829-014-9327-yCrossRefGoogle Scholar
  22. Brodeur J, Abram PK, Heimpel GE, Messing RH (2018) Trends in biological control: public interest, international networking and research direction. BioControl 63(1):11–26.  https://doi.org/10.1007/s10526-017-9850-8CrossRefGoogle Scholar
  23. Burckhardt D, Santana DLQ, Terra AL, de Andrade FM, Penteado SRC, Iede ET, Morey CS (1999) Psyllid pests (Hemiptera, Psylloidea) in South American eucalypt plantations. Mitteilungen Der Schweizerischen Entomologischen Gesellschaft 72(1/2):1–10. Recuperado de CABDirect2Google Scholar
  24. Caleca V, Verde GL, Maltese M (2011) First record in Italy of Psyllaephagus bliteus Riek (Hymenoptera Encyrtidae) parasitoid of Glycapsis brimblecombei (Hemiptera: Psyllidae). Il Naturalista Siciliano 35:435–444Google Scholar
  25. Carnegie AJ, Lawson S, Wardlaw T, Cameron N, Venn T (2018) Benchmarking forest health surveillance and biosecurity activities for managing Australia’s exotic forest pest and pathogen risks. Aust For 81:14–23.  https://doi.org/10.1080/00049158.2018.1433271CrossRefGoogle Scholar
  26. CECOPE (2012) Estrategia nacional de manejo forestal para la salud y vitalidad de los bosques plantados. Periodo 2010-2030. CECOPE, Montevideo, pp 1–29Google Scholar
  27. Ciesla WM (2011) Forest entomology: a global perspective. Wiley-Blackwell, Chichester, West Sussex; Hoboken, NJCrossRefGoogle Scholar
  28. Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61(4):349–363.  https://doi.org/10.1007/s10526-016-9726-3CrossRefGoogle Scholar
  29. Corallo B, Tiscornia S, Galvalisi U, Lupo S, Bettucci L (2017) Combined biological and chemical control of Neotropical leaf-cutting ants (Acromyrmex spp.) under field conditions. Trends Entomol 13:103–108Google Scholar
  30. Corallo B, Simeto S, Martínez G, Gómez D, Abreo E, Altier N, Lupo S (2019) Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. J Appl Entomol 143(5):542–555.  https://doi.org/10.1111/jen.12624CrossRefGoogle Scholar
  31. Cordero Rivera A, Santolamazza Carbone S, Andrés JA (1999) Life cycle and biological control of the Eucalyptus snout beetle (Coleoptera, Curculionidae) by Anaphes nitens (Hymenoptera, Mymaridae) in north-west Spain. Agric For Entomol 1:103–109CrossRefGoogle Scholar
  32. Dahlsten D, Hansen E, Zuparko R, Norgaard R (1998) Biological control of the blue gum psyllid proves economically beneficial. Calif Agric 52(1):35–40CrossRefGoogle Scholar
  33. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46(4):387–400CrossRefGoogle Scholar
  34. Etzel LK, Legner EF (1999) Chapter 7 - Culture and colonization. In: Bellows TS, Fisher TW, Caltagirone LE, Dahlsten DL, Gordh G, Huffaker CB (eds) Handbook of Biological Control. Academic Press, San Diego, pp 125–197CrossRefGoogle Scholar
  35. FAO (2005) ISPM 3. Guidelines for the export, shipment, import and release of biological control agents and other beneficial organismsGoogle Scholar
  36. FAO-MGAP (2006) Plagas y enfermedades de eucaliptos y pinos en el Uruguay. http://www.mgap.gub.uy/Forestal/FaoManualdeCampo.pdf
  37. Fernández-Arhex V, Corley JC (2005) The functional response of Ibalia leucospoides (Hymenoptera: Ibaliidae), a parasitoid of Sirex noctilio (Hymenoptera: Siricidae). Biocontrol Sci Technol 15(2):207–212CrossRefGoogle Scholar
  38. Fonalleras ML (2012) COSAVE: una experiencia de integración regional. http://www.iica.int/Esp/Programas/Sanidad/Paginas/Publicaciones.aspx
  39. Garnas JR, Hurley BP, Slippers B, Wingfield MJ (2012) Biological control of forest plantation pests in an interconnected world requires greater international focus. Int J Pest Manag 58(3):211–223.  https://doi.org/10.1080/09670874.2012.698764CrossRefGoogle Scholar
  40. Gómez D (2016) Manejo de escarabajos de corteza. In: Gómez D (ed) Situación actual de la investigación en escolítidos en plantaciones forestales del Uruguay. INIA, Montevideo, pp 59–61Google Scholar
  41. Gómez D, Hirigoyen A (2016) Evaluación de metodologías alternativas en el monitoreo de escolítidos de pino. In: Gómez D (ed) Situación actual de la investigación en escolítidos en plantaciones forestales del Uruguay. INIA, Montevideo, pp 49–57Google Scholar
  42. Gómez D, Martínez G, Beaver RA (2012) First record of Cyrtogenius luteus (Blandford) (Coleoptera: Curculionidae: Scolytinae) in the Americas and its distribution in Uruguay. Coleopt Bull 66(4):362–364.  https://doi.org/10.1649/072.066.0414CrossRefGoogle Scholar
  43. Gómez D, Reyna R, Pérez C, Martínez G (2013) First record of Xyleborinus saxesenii (Ratzeburg) (Coleoptera: Curculionidae: Scolytinae) in Uruguay. Coleopt Bull 67(4):536–538CrossRefGoogle Scholar
  44. Gómez D, Suárez M, Martínez G (2017) Amasa truncata (Erichson) (Coleoptera: Curculionidae: Scolytinae): a new exotic ambrosia beetle in Uruguay. Coleopt Bull 71(4):825–826.  https://doi.org/10.1649/0010-065X-71.4.825CrossRefGoogle Scholar
  45. González Parodi E, Nosei Canavesi G (1997) Detección y evaluación de la población de Sirex noctilio F. (Hymenoptera: Siricidae) y sus enemigos naturales, en rodales de Pinos, en San Gregorio de Polanco (Tacuarembó) (Grado). Universidad de la República, Facultad de Agronomía, Departamento de Producción Forestal y Tecnología de la MaderaGoogle Scholar
  46. González A, Savornin P, Amaral L (2010) Control biológico del Gonipterus scutellatus por Anaphes nitens en Uruguay. Serie Actividades de Difusión 629:25–32Google Scholar
  47. Hajek AE (2004) Natural enemies: an introduction to biological control. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Hanks LM, Paine TD, Millar JG (1991) Mechanisms of resistance in Eucalyptus against larvae of the Eucalyptus Longhorned Borer (Coleoptera: Cerambycidae). Environ Entomol 20(6):1583–1588.  https://doi.org/10.1093/ee/20.6.1583CrossRefGoogle Scholar
  49. Hanks LM, Paine TD, Millar JG (1996) Tiny wasp helps protect eucalypts from eucalyptus longhorned borer. Calif Agric 50:14–16CrossRefGoogle Scholar
  50. Hanks LM, Millar JG, Paine TD, Wang Q, Paine EO (2001) Patterns of host utilization by two parasitoids (Hymenoptera: Braconidae) of the Eucalyptus longhorned borer (Coleoptera: Cerambycidae). Biol Control 21(2):152–159CrossRefGoogle Scholar
  51. Hokkanen HMT, Sailer RI (1985) Success in classical biological control. Crit Rev Plant Sci 3:35–72CrossRefGoogle Scholar
  52. Hokkanen HMT, Lynch JM (2003) Biological control: benefits and risks. Cambridge University Press, Cambridge, 328 pp.Google Scholar
  53. Huang HT, Yang P (1987) The Ancient Cultured Citrus Ant. BioScience 37:665–671CrossRefGoogle Scholar
  54. Humble L (2010) Pest risk analysis and invasion pathways-insects and wood packing revisited: what have we learned. N Z J For Sci 40(Suppl). http://www.scionresearch.com/__data/assets/pdf_file/0017/17090/NZJFS40Suppl.2010S57-S72HUMBLE.pdf
  55. Instituto Cuesta Duarte (2018) El sector forestal en Uruguay y la inversión extranjera. Impactos en materia de empleo, salario y condiciones de trabajo, pp 1–46. https://medios.presidencia.gub.uy/tav_portal/2019/noticias/AD_336/10.%20Informe%20SASK%20-%20Versi%C3%B3n%20final.pdf
  56. Jorge C (2013) Comparación de la araneofauna de un cultivo de pino (Pinus taeda) con la matriz de campo natural (Tesis de Maestría en Ciencias Biológicas, Opción Zoología). Programa de Desarrollo de las Ciencias Básicas (PEDECIBA). Universidad de la República, MontevideoGoogle Scholar
  57. Jorge C, Martínez G, Gómez D, Bollazzi M (2016) First record of the eucalypt gall-wasp Leptocybe invasa (Hymenoptera: Eulophidae) from Uruguay. Bosque 37(3):631–636.  https://doi.org/10.4067/S0717-92002016000300020CrossRefGoogle Scholar
  58. Kenis M, Hurley BP, Hajek AE, Cock MJW (2017) Classical biological control of insect pests of trees: facts and figures. Biol Invasions 19(11):3401–3417.  https://doi.org/10.1007/s10530-017-1414-4CrossRefGoogle Scholar
  59. Klapwijk MJ, Bylund H, Schroeder M, Björkman C (2016) Forest management and natural biocontrol of insect pests. Forestry:cpw019Google Scholar
  60. Ley Forestal (1987) Public Law 15939. https://www.impo.com.uy/bases/leyes/15939-1987
  61. Liebhold AM, Brockerhoff EG, Nuñez MA (2017) Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration. Biol Invasions 19(11):3073–3077.  https://doi.org/10.1007/s10530-017-1547-5CrossRefGoogle Scholar
  62. Listre A (2018) Forrajeo de cebos tóxicos por hormigas cortadoras de hojas del género Acromyrmex Mayr, 1865 (Hymenoptera, Formicidae). Master Thesis, Universidad de la República, Facultad de Agronomía, Departamento de Producción Forestal y Tecnología de la Madera, MontevideoGoogle Scholar
  63. Luhring KA, Paine TD, Millar JG, Hanks LM (2000) Suitability of the eggs of two species of Eucalyptus longhorned borers (Phoracantha recurva and P. semipunctata) as hosts for the encyrtid parasitoid Avetianella longoi. Biol Control 19(2):95–104.  https://doi.org/10.1006/bcon.2000.0853CrossRefGoogle Scholar
  64. Mapondera TS, Burgess T, Matsuki M, Oberprieler RG (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini): resolving the Gonipterus scutellatus complex. Aust J Entomol 51(3):175–188.  https://doi.org/10.1111/j.1440-6055.2011.00853.xCrossRefGoogle Scholar
  65. Masson MV, Tavares W de S, Lopes F de A, Souza AR de, Ferreira-Filho PJ, Barbosa LR, Wilcken CF, Zanuncio JC (2017) Selitrichodes neseri (Hymenoptera: Eulophidae) Recovered from Leptocybe invasa (Hymenoptera: Eulophidae) Galls After Initial Release on Eucalyptus (Myrtaceae) in Brazil, and Data on Its Biology. Fla Entomol 100:589–593CrossRefGoogle Scholar
  66. Martínez G (2010) Insectos plaga en plantaciones jóvenes de eucalipto: Hacia un modelo. Serie Actividades de Difusión 629:9–24Google Scholar
  67. Martínez G (ed) (2017) La chinche del eucalipto Thaumastocoris peregrinus. Biología y manejo regional de una plaga forestal invasiva. INIA, MontevideoGoogle Scholar
  68. Martínez G, Bianchi M (2010) Primer registro para Uruguay de la chinche del eucalipto, Thaumastocoris peregrinus Carpintero y Dellapé, 2006 (Heteroptera: Thaumastocoridae). Agrociencia 14(1):15–18Google Scholar
  69. Martínez AS, Fernández-Arhex V, Corley JC (2006) Chemical information from the fungus Amylostereum areolatum and host-foraging behaviour in the parasitoid Ibalia leucospoides. Physiol Entomol 31(4):336–340.  https://doi.org/10.1111/j.1365-3032.2006.00523.xCrossRefGoogle Scholar
  70. Martínez G, Gómez D, Taylor GS (2014a) First record of the Australian psyllid Blastopsylla occidentalis Taylor (Hemiptera, Psylloidea) from Uruguay. Trans R Soc S Aust 138(2):231–236Google Scholar
  71. Martínez G, López L, Cantero G, González A, Dicke M (2014b) Life-history analysis of Thaumastocoris peregrinus in a newly designed mass rearing strategy. Bull Insectol 67(2):199–205Google Scholar
  72. Martínez G, Finozzi MV, Cantero G, Soler R, Dicke M, González A (2017) Oviposition preference but not adult feeding preference matches with offspring performance in the bronze bug Thaumastocoris peregrinus. Entomol Exp Appl 163(1):101–111.  https://doi.org/10.1111/eea.12554CrossRefGoogle Scholar
  73. Martínez G, González A, Dicke M (2018a) Rearing and releasing the egg parasitoid Cleruchoides noackae, a biological control agent for the Eucalyptus bronze bug. Biol Control 123:97–104CrossRefGoogle Scholar
  74. Martínez G, González A, Dicke M (2018b) Effect of the eucalypt lerp psyllid Glycaspis brimblecombei on adult feeding, oviposition-site selection, and offspring performance of the bronze bug, Thaumastocoris peregrinus. Entomol Exp Appl 166(5):395–401.  https://doi.org/10.1111/eea.12645CrossRefGoogle Scholar
  75. Martínez G, Jorge C, Escudero P, Martínez Haedo J, de los Santos M, Scoz R (2019) Hacia un programa de control biológico de la avispa agalladora del eucalipto. Revista INIA 56:75–78Google Scholar
  76. Mascarin GM, Duarte V d S, Brandão MM, Delalibera Í Jr (2012) Natural occurrence of Zoophthora radicans (Entomophthorales: Entomophthoraceae) on Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), an invasive pest recently found in Brazil. J Invertebr Pathol 110(3):401–404.  https://doi.org/10.1016/j.jip.2012.03.025CrossRefPubMedGoogle Scholar
  77. Mason PG, Cock MJW, Barratt BIP, Klapwijk JN, van Lenteren JC, Brodeur J et al (2018) Best practices for the use and exchange of invertebrate biological control genetic resources relevant for food and agriculture. BioControl 63(1):149–154.  https://doi.org/10.1007/s10526-017-9810-3CrossRefGoogle Scholar
  78. Mendel Z, Protasov A, La Salle J, Blumberg D, Brand D, Branco M (2017) Classical biological control of two Eucalyptus gall wasps; main outcome and conclusions. Biol Control 105:66–78.  https://doi.org/10.1016/j.biocontrol.2016.11.010CrossRefGoogle Scholar
  79. Messing R, Brodeur J (2018) Current challenges to the implementation of classical biological control. BioControl 63(1):1–9.  https://doi.org/10.1007/s10526-017-9862-4CrossRefGoogle Scholar
  80. Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA (2019) Common pathways by which non-native forest insects move internationally and domestically. J Pest Sci 92(1):13–27.  https://doi.org/10.1007/s10340-018-0990-0CrossRefGoogle Scholar
  81. Moore J (1998) Control biológico en Sud África. Uruguay Forestal 17:8–11Google Scholar
  82. Morales Olmos V, Siry JP (2009) Economic impact evaluation of Uruguay forest sector development policy. J For 107(2):63–68Google Scholar
  83. Morales Olmos V, Ansuberro J, Pintos M, Pérez G, Olmos VM, Ansuberro J et al (2018) Panorama empresarial del sector forestal uruguayo productor de Eucalyptus globulus. Agrociencia Uruguay 22(1):133–139.  https://doi.org/10.31285/agro.22.1.14CrossRefGoogle Scholar
  84. Morey CS (1993) Detección y control de Sirex noctilio en Uruguay. Uruguay Forestal 6:6–9Google Scholar
  85. Morey CS, Porcile JF (2002) Aspectos fitosanitarios del desarrollo forestal en Uruguay: Antecedentes históricos y una década de sucesos [Informe técnico]. MGAP-DGF, Montevideo, pp 1–33Google Scholar
  86. Morey CS, Terra AL, Frioni MI (2001) Identificación de los taladros del eucalipto Phoracantha semipunctata (F.) y P. recurva (N.) (Coleoptera: Cerambycidae). Uruguay Forestal 26:4–7Google Scholar
  87. Morey CS, Terra A, Frioni I (2002) Establecimiento de Psyllaephagus pilosus (Hymenoptera: Encyrtidae) en Uruguay. Forestal. Revista de la Sociedad de Productores Forestales de Uruguay 17:28–30Google Scholar
  88. Nadel RL, Wingfield MJ, Scholes MC, Lawson SA, Slippers B (2012) The potential for monitoring and control of insect pests in Southern Hemisphere forestry plantations using semiochemicals. Ann For Sci 69(7):757–767.  https://doi.org/10.1007/s13595-012-0200-9CrossRefGoogle Scholar
  89. OPYPA-MGAP (2018) Anuario OPYPA 2018. Montevideo, pp 1–667Google Scholar
  90. Paine TD, Steinbauer MJ, Lawson SA (2011) Native and exotic pests of Eucalyptus: a worldwide perspective. Annu Rev Entomol 56:181–201PubMedCrossRefPubMedCentralGoogle Scholar
  91. Penteado SRC, Oliveira EB, Iede ET (2008) Utilizaçao da amostragem seqüencial para avaliar a eficiência do parasitismo de Deladenus (Beddingia) siricidicola (Nematoda: Neotylenchidae) em adultos de Sirex noctilio (Hymenoptera: Siricidae). Ciência Florestal 18(2):223–231CrossRefGoogle Scholar
  92. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15(3):133–144.  https://doi.org/10.1016/j.tplants.2009.12.005CrossRefPubMedPubMedCentralGoogle Scholar
  93. Porcile JF (1992) El taladro del eucalipto Phoracantha semipunctata F. Uruguay Forestal 3:16–18Google Scholar
  94. Porcile JF (1996) Manejo integrado de plagas. Uruguay Forestal 12:16–17Google Scholar
  95. Porcile JF (1998) Ctenarytaina eucalypti (Maskell) Homoptera, Psyllidae. Uruguay Forestal 19:26Google Scholar
  96. Protasov A, Blumberg D, Brand D, La Salle J, Mendel Z (2007) Biological control of the eucalyptus gall wasp Ophelimus maskelli (Ashmead): taxonomy and biology of the parasitoid species Closterocerus chamaeleon (Girault), with information on its establishment in Israel. Biol Control 42(2):196–206.  https://doi.org/10.1016/j.biocontrol.2007.05.002CrossRefGoogle Scholar
  97. Quang Thu P, Dell B, Burgess TI (2009) Susceptibility of 18 eucalypt species to the gall wasp Leptocybe invasa in the nursery and young plantations in Vietnam. ScienceAsia 35(2):113–117CrossRefGoogle Scholar
  98. Rebuffo S (1990) La “Avispa de la Madera” Sirex noctilio F. en el Uruguay. MGAP, MontevideoGoogle Scholar
  99. Ruffinelli A, Carbonell CS (1954) Segunda lista de insectos y otros artrópodos de importancia económica en el Uruguay. Universidad de la República, Facultad de Agronomía, MontevideoGoogle Scholar
  100. Seaton S, Matusick G, Ruthrof KX, Hardy GESJ (2015) Outbreak of Phoracantha semipunctata in response to severe drought in a Mediterranean Eucalyptus Forest. Forests 6(11):3868–3881.  https://doi.org/10.3390/f6113868CrossRefGoogle Scholar
  101. Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM (2019) History, current situation and challenges for conservation biological control. Biol Control 131:25–35.  https://doi.org/10.1016/j.biocontrol.2018.12.010CrossRefGoogle Scholar
  102. Simeto S, Lupo S, Bettucci L, Pérez C, Gómez D, Torres D et al (2012) Desarrollo de bioinsecticidas (hongos entomopatógenos) para el control de la chinche del eucalipto Thaumastocoris peregrinus (Núm. 703; p. 8). INIA, TacuarembóGoogle Scholar
  103. Simeto S, Gómez D, Martínez G, Balmelli G (2017) Nuevo módulo de consulta de la aplicación P-FOR INIA: el avance de una herramienta interactiva. Revista INIA 49:38–39Google Scholar
  104. Simó M, Laborda A, Jorge C, Castro M (2011) Las arañas en agroecosistemas: Bioindicadores terrestres de calidad ambiental. INNOTEC 6:51–55Google Scholar
  105. Slippers B, Hurley BP, Wingfield MJ (2015) Sirex Woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60(1):601–619.  https://doi.org/10.1146/annurev-ento-010814-021118CrossRefPubMedGoogle Scholar
  106. Smith D, Hinz H, Mulema J, Weyl P, Ryan MJ (2018) Biological control and the Nagoya Protocol on access and benefit sharing—a case of effective due diligence. Biocontrol Sci Technol 28(10):914–926.  https://doi.org/10.1080/09583157.2018.1460317CrossRefGoogle Scholar
  107. Talbot PHB (1977) The Sirex-Amylostereum-Pinus association. Annu Rev Phytopathol 15:41–54CrossRefGoogle Scholar
  108. Tellechea N (1999) Intercambio de controladores biológicos con la República de Sudáfrica. Uruguay Forestal 20:10–11Google Scholar
  109. Tellechea N (2008 febrero 18) Personal interview [Recorded]Google Scholar
  110. Tiscornia S, Lupo S, Corallo B, Sánchez A, Bettucci L (2014) Neotropical leaf-cutting ants (Acromyrmex spp.): biological control under laboratory and field conditions. Trends Entomol 10:55–62Google Scholar
  111. Torres D, Martínez G, Pérez G (2013) Una nueva oferta en servicios tecnológicos: Centro de Bioservicios Forestales (CEBIOF). Revista INIA 33:60–62Google Scholar
  112. Trujillo A (1963) Breve historia entomológica uruguaya. C&Cia, MontevideoGoogle Scholar
  113. van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63(1):39–59.  https://doi.org/10.1007/s10526-017-9801-4CrossRefGoogle Scholar
  114. Wang Q (1995) A taxonomic revision of the Australian genus Phoracantha Newman (Coleoptera: Cerambycidae). Invertebr Syst 9:865.  https://doi.org/10.1071/IT9950865CrossRefGoogle Scholar
  115. Watt MS, Kirschbaum MUF, Moore JR, Pearce HG, Bulman LS, Brockerhoff EG, Melia N (2019) Assessment of multiple climate change effects on plantation forests in New Zealand. Forestry 92(1):1–15.  https://doi.org/10.1093/forestry/cpy024CrossRefGoogle Scholar
  116. Willoughby I, Wilcken CF, Ivey P, O’Grady K, Katto F (2009) FSC Guide to integrated pest, disease and weed management in FSC certified forests and plantations (FSC Technical Series Núm. 2009–001; p 19). Recuperado de Forest Stewardship Council website: www.fsc.oeg
  117. Wingfield MJ, Slippers B, Hurley B, Coutinho T, Wingfield B, Roux J (2008) Eucalypt pests and diseases: growing threats to plantation productivity. South For J For Sci 70(2):139–144.  https://doi.org/10.2989/SOUTH.FOR.2008.70.2.9.537CrossRefGoogle Scholar
  118. Yemshanov D, Koch FH, Ben-Haim Y, Smith WD (2010) Detection capacity, information gaps and the design of surveillance programs for invasive forest pests. J Environ Manag 91(12):2535–2546.  https://doi.org/10.1016/j.jenvman.2010.07.009CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratorio de Entomología, Programa ForestalInstituto Nacional de Investigación Agropecuaria (INIA)TacuarembóUruguay

Personalised recommendations