Advertisement

A Flexible Approach to Football Analytics: Assessment, Modeling and Implementation

  • Philipp SeidenschwarzEmail author
  • Martin Rumo
  • Lukas Probst
  • Heiko Schuldt
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1028)

Abstract

Quantitative analysis in football is difficult due to the complexity and continuous fluidity of the game. Even though there is an increased accessibility of spatio-temporal data, scientific approaches to extract valuable information are seldomly useful in practice. We propose a new approach to building an information system for football. This approach consists of a method to extract football-specific concepts from interviews, to formalize them in a performance model, and to define and implement the data structures and algorithms in StreamTeam, a framework for the detection of complex (team) events. In this paper we present this approach in detail and provide an example for its use.

Keywords

Football Modeling Event detection Spatio-temporal data 

Notes

Acknowledgements

This work has been partly supported by the Hasler Foundation in the context of the project StreamTeam, contract no. 16074.

References

  1. 1.
    Andrienko, G., Andrienko, N., Budziak, G., Dykes, J., Fuchs, G., von Landesberger, T., Weber, H.: Visual analysis of pressure in football. Data Min. Knowl. Discov. 31(6), 1793–1839 (2017).  https://doi.org/10.1007/s10618-017-0513-2CrossRefMathSciNetGoogle Scholar
  2. 2.
    Drust, B., Green, M.: Science and football: evaluating the influence of science on performance. J. Sport. Sci. 31(13), 1377–1382 (2013).  https://doi.org/10.1080/02640414.2013.828544CrossRefGoogle Scholar
  3. 3.
    Duch, J., Waitzman, J.S., Amaral, L.A.N.: Quantifying the performance of individual players in a team activity. PLoS ONE 5(6), e10,937 (2010).  https://doi.org/10.1371/journal.pone.0010937CrossRefGoogle Scholar
  4. 4.
    Fernandez, J., Bornn, L.: Wide open spaces: a statistical technique for measuring space creation in professional soccer. In: MIT Sloan Sports Analytics Conference (2018)Google Scholar
  5. 5.
    Kuckartz, U.: Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung, 4 edn. Beltz Verlagsgruppe, Weinheim (2018)Google Scholar
  6. 6.
    Link, D., Hoernig, M.: Individual ball possession in soccer. PLoS ONE 12(7), e0179,953 (2017).  https://doi.org/10.1371/journal.pone.0179953CrossRefGoogle Scholar
  7. 7.
    Mackenzie, R., Cushion, C.: Performance analysis in football: a critical review and implications for future research. J. Sport. Sci. 31(6), 639–676 (2013).  https://doi.org/10.1080/02640414.2012.746720CrossRefGoogle Scholar
  8. 8.
    Noghabi, S.A., Paramasivam, K., Pan, Y., Ramesh, N., Bringhurst, J., Gupta, I., Campbell, R.H.: Samza: stateful scalable stream processing at LinkedIn. Proc. VLDB Endow. 10(12), 1634–1645 (2017).  https://doi.org/10.14778/3137765.3137770CrossRefGoogle Scholar
  9. 9.
    Probst, L., Al Kabary, I., Lobo, R., Rauschenbach, F., Schuldt, H., Seidenschwarz, P., Rumo, M.: SportSense: user interface for sketch-based spatio-temporal team sports video scene retrieval. In: Proceedings of the 1st Workshop on User Interface for Spatial and Temporal Data Analysis, Tokyo, Japan. CEUR-WS (2018)Google Scholar
  10. 10.
    Probst, L., Brix, F., Schuldt, H., Rumo, M.: Real-time football analysis with StreamTeam. In: Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, Barcelona, Spain, pp. 319–322. ACM (2017).  https://doi.org/10.1145/3093742.3095089
  11. 11.
    Probst, L., Rauschenbach, F., Schuldt, H., Seidenschwarz, P., Rumo, M.: Integrated real-time data stream analysis and sketch-based video retrieval in team sports. In: Proceedings of the 2018 IEEE International Conference on Big Data, pp. 548–555. IEEE (2018).  https://doi.org/10.1109/BigData.2018.8622592
  12. 12.
    Spearman, W.: Beyond expected goals. In: MIT Sloan Sports Analytics Conference (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Philipp Seidenschwarz
    • 1
    • 2
    Email author
  • Martin Rumo
    • 1
  • Lukas Probst
    • 2
  • Heiko Schuldt
    • 2
  1. 1.Centre of Technologies in Sports and MedicineBern University of Applied SciencesNidau-BielSwitzerland
  2. 2.Department of Mathematics and Computer ScienceUniversity of BaselBaselSwitzerland

Personalised recommendations