Advertisement

Visual Perception of Robot Movements – How Much Information Is Required?

  • Gerrit KolleggerEmail author
  • Marco Ewerton
  • Josef Wiemeyer
  • Jan Peters
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1028)

Abstract

Human-robot interactions are steadily increasing in all areas of life. In this context, a common motion learning process of human-robot dyads has not been studied so far.

The observation of movement characteristics plays a crucial role in the assessment and learning of movements in human-human dyads. But what visual information of a robot movement can be perceived and predicted by humans?

The following study examines the perception and prediction of robot putt movements by humans with different visual stimuli. Relevant clues could be identified for the specific movement. Ultimately, with sufficient visual information, humans are able to correctly predict the outcome of a robot putt movement.

Keywords

Human-robot-interaction Dyad-learning Motor learning 

References

  1. 1.
    Ballreich, R.: Analyse und Ansteuerung sportmotorischer Techniken aus biomechanischer Sicht. In: Rieder, H., Bos, K., Mechling, H., Reischle, K. (eds.) Motorik und Bewegungsforschung, p. 72–92. Hofmann, Schorndorf (1983)Google Scholar
  2. 2.
    Cañal-Bruland, R., Williams, A.M.: Recognizing and predicting movement effects: identifying critical movement features. Exp. Psychol. 57(4), 320 (2010)CrossRefGoogle Scholar
  3. 3.
    Kollegger, G., Ewerton, M., Wiemeyer, J., Peters, J.: BIMROB–bidirectional interaction between human and robot for the learning of movements. In: Lames, M., Saupe, D., Wiemeyer, J. (eds.) Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017), pp. 151–163. Springer, Cham (2018)Google Scholar
  4. 4.
    Kollegger, G., Wiemeyer, J., Ewerton, M., Peters, J.: Visual perception of robot movements. Unpublished manuscript (2019)Google Scholar
  5. 5.
    Lens, T., Kunz, J., Von Stryk, O., Trommer, C., Karguth, A.: Biorob-arm: a quickly deployable and intrinsically safe, light-weight robot arm for service robotics applications. Paper presented at the Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK) (2010)Google Scholar
  6. 6.
    Lens, T., von Stryk, O.: Design and dynamics model of a lightweight series elastic tendon-driven robot arm. Paper presented at the Robotics and Automation (ICRA), 2013 IEEE International Conference on Robotics and Automation (ICRA 2013) (2013)Google Scholar
  7. 7.
    Orgs, G., Bestmann, S., Schuur, F., Haggard, P.: From body form to biological motion: the apparent velocity of human movement biases subjective time. Psychol. Sci. 22(6), 712–717 (2011)CrossRefGoogle Scholar
  8. 8.
    Poolton, J.M., Maxwell, J., Masters, R., Raab, M.: Benefits of an external focus of attention: common coding or conscious processing? J. Sport. Sci. 24(1), 89–99 (2006)CrossRefGoogle Scholar
  9. 9.
    Runeson, S., Frykholm, G.: Kinematic specification of dynamics as an informational basis for person-and-action perception: expectation, gender recognition, and deceptive intention. J. Exp. Psychol. Gen. 112(4), 585–615.23 (1983)CrossRefGoogle Scholar
  10. 10.
    Tremoulet, P.D., Feldman, J.: Perception of animacy from the motion of a single object. Perception 29(8), 943–951 (2000)CrossRefGoogle Scholar
  11. 11.
    Schmidt, R.A., Lee, T.D.: Motor Control and Learning. Human kinetics, Champaign (1988)Google Scholar
  12. 12.
    Wilkins, L.: Vision testing and visual training in sport. University of Birmingham. Ph.D. (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute for Sport ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Intelligent Autonomous Systems, Computer Science DepartmentTechnische UniversitätDarmstadtGermany

Personalised recommendations