Blood Flow Under Mechanical Stimulations

  • Timur Gamilov
  • Sergey SimakovEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1028)


We propose a one-dimensional blood flow model taking into account muscle pump, external contraction and autoregulation. This model is used to study two effects: blood flow during running and the impact of enhanced external counterpulsation on the coronary blood flow on the basis of patient-specific data. On the basis of mathematical modelling we observe optimal stride frequency, which maximizes venous return.


Coronary blood flow Muscle pump Enhanced external counterpulsation Stride frequency 


  1. 1.
    Bessonov, T.N., Sequeira, A., Simakov, S., Vassilevskii, Y., Volpert, V.: Methods of blood flow modelling. Math. Mod. Nat. Phenom. 11(1), 1–25 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bozorgi, A., Mehrabi Nasab, E., Sardari, A., Nejatian, M., Nasirpour, S., Sadeghi, S.: Effect of enhanced external counterpulsation (EECP) on exercise time duration and functional capacity in patients with refractory angina pectoris. J. Tehran Heart Cent. 9(1), 33–37 (2014)Google Scholar
  3. 3.
    Gamilov, T., Ivanov, Y., Kopylov, P., Simakov, S., Vassilevski, Y.: Patient specific haemodynamic modeling after occlusion treatment in leg. Math. Model. Nat. Phenom. 9(6), 85–97 (2014). Scholar
  4. 4.
    Gamilov, T.M., Kopylov, P.Y., Pryamonosov, R.A., Simakov, S.S.: Virtual fractional flow reserve assesment in patient-specific coronary networks by 1D hemodynamic model (FFR). Rus. J. Num. Anal. Math. Mod. 5, 269–276 (2015)zbMATHGoogle Scholar
  5. 5.
    Golov, A.V., Simakov, S.S.: Mathematical model of respiratory regulation during hypoxia and hypercapnia. Comp. Res. Mod. 9(2), 297–310 (2017)Google Scholar
  6. 6.
    Johnson, P.C.: Autoregulation of blood flow. Circ. Res. 59, 482–495 (1986)Google Scholar
  7. 7.
    Kholodov, A.S.: Some dynamical models of external breathing and blood circulation regarding to their interaction and substances transfer. In: Belotsirkovsky, O.M., Kholodov, A.S. (eds.) Computational Models and Medicine Progress, pp. 127–163. Science, Moscow (2001)Google Scholar
  8. 8.
    Ozawa, E.T., Bottom, K.E., Xiao, X., Kamm, R.D.: Numerical simulation of enhanced external counterpulsation. Ann. Biomed. Eng. 29, 284–297 (2001)CrossRefGoogle Scholar
  9. 9.
    Plasticboy Pictures CC (2009).
  10. 10.
    Simakov, S.S., Gamilov, T.M., Soe, Y.N.: Computational study of blood flow in lower extremities under intense physical load. Russ. J. Numer. Anal. Math. Model. 28(5), 485–504 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Valenzuela, P.L., Montalvo, Z., Torrontegi, E., Sánchez-Martínez, G., Lucia, A., De la Villa, P.: Enhanced external counterpulsation and recovery from a plyometric exercise bout. Clin. J. Sport Med. (2018). Scholar
  12. 12.
    VanBavel, E., van der Meulen, E.T., Spaan, J.A.: Role of Rho-associated protein kinase in tone and calcium sensitivity of cannulated rat mesenteric small arteries. Exp. Physiol. 86(5), 585–592 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sechenov UniversityMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations