Advertisement

Advances in Cloud Computing, Wireless Communications and the Internet of Things

  • Gopika PremsankarEmail author
  • Mario Di Francesco
Chapter
  • 26 Downloads

Abstract

There is a growing amount of data generated by a variety of devices in the Internet of Things (IoT). Sharing economy applications can leverage such data to provide solutions of high societal impact. Several technologies together enable the collaborative use of data through software services. This chapter describes the key developments in these technological areas. In particular, it describes advances in cloud computing that have resulted in new software architectures and deployment practices. Such improvements enable the rapid creation and deployment of new services on the cloud. Next, it highlights recent developments in wireless networks that allow heterogeneous devices to connect and share information. Furthermore, this chapter describes how IoT platforms are becoming interoperable, thus fostering collaborative access to data from diverse devices. Finally, it elaborates on how the described technologies jointly enable new sharing economy solutions through a case study on car sharing.

Keywords

Internet of Things IoT Cloud computing Mobile networks LPWAN LoRa 

Notes

Acknowledgements

This work was partially supported by the Academy of Finland under grants number 299222 and 319710.

References

  1. 1.
    Cisco visual networking index: global mobile data traffic forecast update, 2016–2021 white paper. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf. Accessed 16/07/2018
  2. 2.
  3. 3.
    IPSO smart objects. https://github.com/IPSO-Alliance/pub. Accessed 23.07.2018
  4. 4.
    Mobile-edge computing (MEC); service scenarios. https://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing. Accessed 24/07/2018
  5. 5.
    oneM2M functional architecture, ETSI standard TS-0001-V3.11.0. http://www.onem2m.org/technical/published-drafts. Accessed 07.08.2018
  6. 6.
    oneM2M vehicular domain enablement, draft technical report TR-0026-V4.1.0. http://www.onem2m.org/technical/published-drafts. Accessed 07.08.2018
  7. 7.
    OpenMTC. http://www.open-mtc.org/index.html. Accessed 07.08.2018
  8. 8.
    OpenMTC. https://github.com/OpenMTC/OpenMTC. Accessed 08.08.2018
  9. 9.
    Sigfox. https://www.sigfox.com/en. Accessed 18.07.2018
  10. 10.
    Web of things – Technology landscape. http://w3c.github.io/wot/landscape.html. Accessed 23.07.2018
  11. 11.
    Web of things (WoT) thing description. https://www.w3.org/TR/wot-thing-description/. Accessed 23.07.2018
  12. 12.
    What is a container? https://www.docker.com/what-container. Accessed 16/07/2018)
  13. 13.
    What is docker? https://www.docker.com/what-docker. Accessed 16/07/2018
  14. 14.
    IEEE approved draft standard for adoption of openfog reference architecture for fog computing. IEEE P1934/D2.0, April 2018, pp 1–175 (2018)Google Scholar
  15. 15.
    3GPP: the evolved packet core. http://www.3gpp.org/technologies/keywords-acronyms/100-the-evolved-packet-core. Accessed 04.07.2018
  16. 16.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422CrossRefGoogle Scholar
  17. 17.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376CrossRefGoogle Scholar
  18. 18.
    Alliance N (2015) 5g white paper. Next generation mobile networks, white paper pp. 1–125Google Scholar
  19. 19.
    Anastasi G, Conti M, Di Francesco M, Passarella A (2009) Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw 7(3):537–568CrossRefGoogle Scholar
  20. 20.
    Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, Zhang JC (2014) What will 5G be? IEEE J Sel Areas Commun 32(6):1065–1082CrossRefGoogle Scholar
  21. 21.
    Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefGoogle Scholar
  22. 22.
    Augustin A, Yi J, Clausen T, Townsley WM (2016) A study of LoRa: long range & low power networks for the internet of things. Sensors 16(9):1466CrossRefGoogle Scholar
  23. 23.
    Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, Mitchell N, Muthusamy V, Rabbah R, Slominski A et al (2017) Serverless computing: current trends and open problems. Research advances in cloud computing. Springer, Berlin, pp 1–20Google Scholar
  24. 24.
    Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A (2003) Xen and the art of virtualization. ACM SIGOPS Oper Syst Rev 37:164–177. ACMGoogle Scholar
  25. 25.
    Bello O, Zeadally S, Badra M (2017) Network layer inter-operation of device-to-device communication technologies in internet of things (IoT). Ad Hoc Netw 57:52–62CrossRefGoogle Scholar
  26. 26.
    Bonomi F, Milito R, Natarajan P, Zhu J (2014) Fog computing: a platform for internet of things and analytics. Big data and internet of things: a roadmap for smart environments. Springer, Berlin, pp 169–186Google Scholar
  27. 27.
    Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the 1st edition of the MCC workshop on mobile cloud computing. ACM, pp 13–16Google Scholar
  28. 28.
    Bröring A, Datta SK, Bonnet C (2016) A categorization of discovery technologies for the internet of things. In: Proceedings of the 6th international conference on the internet of things. ACM, pp 131–139Google Scholar
  29. 29.
    Bröring A, Schmid S, Schindhelm CK, Khelil A, Kabisch S, Kramer D, Le Phuoc D, Mitic J, Anicic D, Teniente López E (2017) Enabling IoT ecosystems through platform interoperability. IEEE Softw 34(1):54–61CrossRefGoogle Scholar
  30. 30.
    Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016) Borg, omega, and kubernetes. Queue 14(1):10CrossRefGoogle Scholar
  31. 31.
    Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst 25(6):599–616CrossRefGoogle Scholar
  32. 32.
    Croce D, Gucciardo M, Mangione S, Santaromita G, Tinnirello I (2018) Impact of lora imperfect orthogonality: analysis of link-level performance. IEEE Commun Lett 22(4):796–799CrossRefGoogle Scholar
  33. 33.
    ETSI: network functions virtualisation - An introduction, benefits, enablers, challenges, call for action. Technical Report (2012)Google Scholar
  34. 34.
    Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and linux containers. In: 2015 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE, pp 171–172Google Scholar
  35. 35.
    Fischer JE, Colley JA, Luger E, Golembewski M, Costanza E, Ramchurn SD, Viller S, Oakley I, Froehlich JE (2016) New horizons for the IoT in everyday life: proactive, shared, sustainable. In: Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing: adjunct. ACM, pp 657–660Google Scholar
  36. 36.
    Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I (2009) Above the clouds: a Berkeley view of cloud computing. Department of Electrical Engineering and Computer Science, University of California, Berkeley, Rep. UCB/EECS 28(13):2009Google Scholar
  37. 37.
    Garcí JM, Fernández P, Ruiz-Cortés A, Dustdar S, Toro M (2017) Edge and cloud pricing for the sharing economy. IEEE Internet Comput 21(2):78–84.  https://doi.org/10.1109/MIC.2017.24CrossRefGoogle Scholar
  38. 38.
    Garriga M (2018) Towards a taxonomy of microservices architectures. In: Cerone A, Roveri M (eds) Software engineering and formal methods. Springer International Publishing, Cham, pp 203–218CrossRefGoogle Scholar
  39. 39.
    Hanes D, Salgueiro G, Grossetete P, Barton R, Henry J (2017) IoT fundamentals: networking technologies, protocols, and use cases for the internet of things. Cisco Press, IndianapolisGoogle Scholar
  40. 40.
    Hightower K, Burns B, Beda J (2017) Kubernetes: up and running: dive into the future of infrastructure. O’Reilly Media, SebastopolGoogle Scholar
  41. 41.
    Hong K, Lillethun D, Ramachandran U, Ottenwälder B, Koldehofe B (2013) Mobile fog: a programming model for large-scale applications on the internet of things. In: Proceedings of the 2nd ACM SIGCOMM workshop on mobile cloud computing. ACM, pp 15–20Google Scholar
  42. 42.
    Jain R, Paul S (2013) Network virtualization and software defined networking for cloud computing: a survey. IEEE Commun Mag 51(11):24–31CrossRefGoogle Scholar
  43. 43.
    Kivity A, Kamay Y, Laor D, Lublin U, Liguori A (2007) KVM: the linux virtual machine monitor. In: Proceedings of the linux symposium, vol 1, Ottawa, Ontorio, Canada, pp 225–230Google Scholar
  44. 44.
    Kurose JF, Ross KW (2013) Computer networking: a top-down approach: international edition. Pearson Higher EducationGoogle Scholar
  45. 45.
    LoRa Alliance: LoRaWAN Specification (V1.0.3). https://www.lora-alliance.org/resource-hub/lorawantm-specification-v103 (2018). Accessed 18.07.2018
  46. 46.
    Malmborg L, Light A, Fitzpatrick G, Bellotti V, Brereton M (2015) Designing for sharing in local communities. In: Proceedings of the 33rd annual ACM conference extended abstracts on human factors in computing systems. ACM, pp 2357–2360Google Scholar
  47. 47.
    Marín-Tordera E, Masip-Bruin X, García-Almiñana J, Jukan A, Ren GJ, Zhu J (2017) Do we all really know what a fog node is? current trends towards an open definition. Comput Commun 109:117–130CrossRefGoogle Scholar
  48. 48.
    Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A (2011) Cloud computing-the business perspective. Decis Support Syst 51(1):176–189CrossRefGoogle Scholar
  49. 49.
    Mcqueen D (2009) The momentum behind lte adoption [sgpp lte]. IEEE Commun Mag 47(2):44–45CrossRefGoogle Scholar
  50. 50.
    Mell P, Grance T et al (2011) The NIST definition of cloud computingGoogle Scholar
  51. 51.
    Muller A, Wilson S (2005) Virtualization with VMware ESX serverGoogle Scholar
  52. 52.
    Nadareishvili I, Mitra R, McLarty M, Amundsen M (2016) Microservice architecture: aligning principles, practices, and culture. O’Reilly Media, SebastopolGoogle Scholar
  53. 53.
    Navarro-Ortiz J, Sendra S, Ameigeiras P, Lopez-Soler JM (2018) Integration of LoRaWAN and 4G/5G for the Industrial internet of things. IEEE Commun Mag 56(2):60–67CrossRefGoogle Scholar
  54. 54.
    Newman S (2015) Building microservices: designing fine-grained systems. O’Reilly Media, SebastopolGoogle Scholar
  55. 55.
    Nickoloff J (2016) Docker in action, 1st edn. Manning Publications, GreenwichGoogle Scholar
  56. 56.
    Nider J (2018) A comparison of virtualization technologies for use in cloud data centers. IBM research report H-0330 (HAI1801-001)Google Scholar
  57. 57.
    ONF: software-defined networking: the new norm for networks. ONF white paper (2012)Google Scholar
  58. 58.
    Parvez I, Rahmati A, Guvenc I, Sarwat AI, Dai H (2018) A survey on low latency towards 5g: ran, core network and caching solutions. IEEE Commun Surv TutorGoogle Scholar
  59. 59.
    Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421MathSciNetCrossRefGoogle Scholar
  60. 60.
    Premsankar G, Ahokas K, Luukkainen S (2015) Design and implementation of a distributed mobility management entity on openstack. In: 2015 IEEE 7th international conference on cloud computing technology and science (CloudCom). IEEE, pp 487–490Google Scholar
  61. 61.
    Premsankar G, Di Francesco M, Taleb T (2018) Edge computing for the Internet of Things: a case study. IEEE Internet Things J 5(2):1275–1284CrossRefGoogle Scholar
  62. 62.
    Premsankar G, Ghaddar B, Di Francesco M, Verago R (2018) Efficient placement of edge computing devices for vehicular applications in smart cities. In: NOMS 2018-2018 IEEE/IFIP network operations and management symposium. IEEEGoogle Scholar
  63. 63.
    Ratasuk R, Mangalvedhe N, Zhang Y, Robert M, Koskinen JP (2016) Overview of narrowband IoT in lte rel-13. In: 2016 IEEE conference on standards for communications and networking (CSCN). IEEE, pp 1–7Google Scholar
  64. 64.
    Raza U, Kulkarni P, Sooriyabandara M (2017) Low power wide area networks: an overview. IEEE Commun Surv TutorGoogle Scholar
  65. 65.
    Roberts M, Chapin J (2017) What is serverless? Understanding the latest advances in cloud and service-based architecture. O’Reilly Media, SebastopolGoogle Scholar
  66. 66.
    Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput 8(4):14–23CrossRefGoogle Scholar
  67. 67.
    Satyanarayanan M, Simoens P, Xiao Y, Pillai P, Chen Z, Ha K, Hu W, Amos B (2015) Edge analytics in the internet of things. IEEE Pervasive Comput 14(2):24–31CrossRefGoogle Scholar
  68. 68.
    Semtech: What is LoRa? https://www.semtech.com/technology/lora/what-is-lora. Accessed 18.07.2018
  69. 69.
    Slabicki M, Premsankar G, Di Francesco M (2018) Adaptive configuration of lora networks for dense IoT deployments. In: 16th IEEE/IFIP network operations and management symposium (NOMS 2018), pp 1–9Google Scholar
  70. 70.
    Strauss D (2013) Containers-not virtual machines-are the future cloud. Linux J 228:118–123Google Scholar
  71. 71.
    Taleb T (2014) Toward carrier cloud: potential, challenges, and solutions. Wirel Commun IEEE 21(3):80–91CrossRefGoogle Scholar
  72. 72.
    Tanganelli G, Vallati C, Mingozzi E (2018) Edge-centric distributed discovery and access in the internet of things. IEEE Internet Things J 5(1):425–438CrossRefGoogle Scholar
  73. 73.
    The things network: the thing network mission. https://github.com/TheThingsNetwork/Manifest/blob/master/Mission.md (2015). Accessed 18.07.2018
  74. 74.
    Wang CX, Haider F, Gao X, You XH, Yang Y, Yuan D, Aggoune H, Haas H, Fletcher S, Hepsaydir E (2014) Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag 52(2):122–130CrossRefGoogle Scholar
  75. 75.
    Watson J (2008) Virtualbox: bits and bytes masquerading as machines. Linux J 2008(166):1Google Scholar
  76. 76.
    Woetzel J, Remes J, Boland B, Lv K, Sinha S, Strube G, Means J, Law J, Cadena A, von der Tann V (2018) Smart cities: digital solutions for a more livable future. McKinsey Global Institute, San FranciscoGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science, School of ScienceAalto UniversityEspooFinland

Personalised recommendations