Advertisement

Automated Mechanical Multi-sensorial Scanning

  • Vaia RousopoulouEmail author
  • Konstantinos Papachristou
  • Nikolaos Dimitriou
  • Anastasios Drosou
  • Dimitrios Tzovaras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

The 3D reconstruction of Cultural Heritage objects is a significant and advantageous technology for conservators and restorers. It contributes to the proper documentation of CH items, allows researchers, scholars and the general public to better manipulate and understand CH objects and gives the opportunity for remote and enhanced on-site experiences through virtual museums or even personal digital collections. The latest technological advances in computer vision in conjunction with robotics facilitate the development of automated and optimal solutions for digitizing complicated artifacts. In this direction, the current study presents an integrated, portable solution based on a modular architecture, for accurate multi-sensorial 3D scanning via a dedicated motorized mechanical arm and efficient automatic 3D reconstruction of a big variety of cultural heritage assets even in situ. The system is composed of a customized 3D reconstruction module, an automated motion planning module and a physical positioning system built by combining a mechanical arm and a rotary table. The key strength of the proposed system is that it is a cost-effective and time-saving solution applying computer vision and robotic technologies in order to serve Cultural Heritage preservation.

Keywords

3D reconstruction Texture mapping Motion planning 

Notes

Acknowledgments

This work has been partially supported by the European Commission through project Scan4Reco funded by the European Union H2020 programme under Grant Agreement no. 665091. The opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the European Commission.

References

  1. 1.
    Vrubel, A., Bellon, O.R.P., Silva, L.: A 3D reconstruction pipeline for digital preservation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2687–2694 (2009).  https://doi.org/10.1109/CVPR.2009.5206586
  2. 2.
    Gomes, L., Bellon, O.R.P., Silva, L.: 3D reconstruction methods for digital preservation of cultural heritage: a survey. Pattern Recogn. Lett. 50(Depth Image Analysis), 3–14 (2014).  https://doi.org/10.1016/j.patrec.2014.03.023. http://www.sciencedirect.com/science/article/pii/S0167865514001032CrossRefGoogle Scholar
  3. 3.
    Combès, B., Prima, S.: An efficient EM-ICP algorithm for symmetric consistent non-linear registration of point sets. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 594–601. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15745-5_73CrossRefGoogle Scholar
  4. 4.
    Kent, J.T., Mardia, K.V., Taylor, C.C.: An EM interpretation of the Softassign algorithm for alignment problems. mij 1, 0 (2010) Google Scholar
  5. 5.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1281957.1281965
  6. 6.
    Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing of 3D reconstructions. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 836–850. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10602-1_54CrossRefGoogle Scholar
  7. 7.
    Urban, P., Grigat, R.-R.: Metamer density estimated color correction. SIViP 3(2), 171 (2008).  https://doi.org/10.1007/s11760-008-0069-0CrossRefGoogle Scholar
  8. 8.
    Karaszewski, M., Sitnik, R., Bunsch, E.: On-line, collision-free positioning of a scanner during fully automated three-dimensional measurement of cultural heritage objects. Robot. Auton. Syst. 60(9), 1205–1219 (2012).  https://doi.org/10.1016/j.robot.2012.05.005. http://www.sciencedirect.com/science/article/pii/S0921889012000619CrossRefGoogle Scholar
  9. 9.
    Kazhdan, M., Hoppe, H.: Screened Poisson surface reconstruction. ACM Trans. Graph. 32(3), 291–2913 (2013).  https://doi.org/10.1145/2487228.2487237CrossRefzbMATHGoogle Scholar
  10. 10.
    Khoshelham, K.: Accuracy analysis of kinect depth data. In: ISPRS Workshop Laser Scanning, vol. 38, p. W12 (2011)Google Scholar
  11. 11.
    Callieri, M., Dellepiane, M., Cignoni, P., Scopigno, R.: Processing sampled 3D data: reconstruction and visualization technologies. In: Stanco, F., Battiato, S., Gallo, G. (eds.) Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration and Reconstruction of Ancient Artworks, pp. 105–136. Taylor and Francis, Milton Park (2011)Google Scholar
  12. 12.
    Allene, C., Pons, J.-P., Keriven, R.: Seamless image-based texture atlases using multi-band blending. In: 2008 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008) Google Scholar
  13. 13.
    Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE (2011)Google Scholar
  14. 14.
    Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vaia Rousopoulou
    • 1
    Email author
  • Konstantinos Papachristou
    • 1
  • Nikolaos Dimitriou
    • 1
  • Anastasios Drosou
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Information Technologies Institute Centre for Research and Technology HellasThessalonikiGreece

Personalised recommendations