Advertisement

Leveraging Symmetries to Improve Object Detection and Pose Estimation from Range Data

  • Sergey V. AlexandrovEmail author
  • Timothy Patten
  • Markus Vincze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

Many man-made objects around us exhibit rotational symmetries. This fact can be exploited to improve object detection and 6D pose estimation performance. To this end we propose a set of extensions to the state-of-the-art PPF pipeline. We describe how a fundamental region is selected on symmetrical objects and used to construct a compact model hash table and a Hough voting space without redundancies. We also introduce a symmetry-aware distance metric for the pose clustering step. Our experiments on T-LESS and ToyotaLight datasets demonstrate that these extensions lead to a consistent improvement in the pose estimation recall score compared to the baseline pipeline, while simultaneously reducing computation time by up to 4 times.

Notes

Acknowledgments

The work presented in this paper has been partially supported by Aeolus Robotics, Inc.

References

  1. 1.
    Birdal, T., Ilic, S.: Point pair features based object detection and pose estimation revisited. In: Proceedings of 3DV (2015)Google Scholar
  2. 2.
    Choi, C., Christensen, H.I.: 3D pose estimation of daily objects using an RGB-D camera. In: Proceedings of IROS (2012)Google Scholar
  3. 3.
    Choi, C., Taguchi, Y., Tuzel, O., Liu, M.Y., Ramalingam, S.: Voting-based pose estimation for robotic assembly using a 3D sensor. In: Proceedings of ICRA (2012)Google Scholar
  4. 4.
    Drost, B.: Point cloud computing for rigid and deformable 3D object recognition. Ph.D. thesis (2016)Google Scholar
  5. 5.
    Drost, B., Ilic, S.: 3D Object detection and localization using multimodal point pair features. In: Proc. of 3DV (2012)Google Scholar
  6. 6.
    Drost, B., Ilic, S.: Local hough transform for 3D primitive detection. In: Proceedings of 3DV (2015)Google Scholar
  7. 7.
    Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: Proceedings of CVPR (2010)Google Scholar
  8. 8.
    Hinterstoisser, S., Lepetit, V., Rajkumar, N., Konolige, K.: Going further with point pair features. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 834–848. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46487-9_51CrossRefGoogle Scholar
  9. 9.
    Hodaň, T., et al.: BOP: benchmark for 6D object pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 19–35. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01249-6_2CrossRefGoogle Scholar
  10. 10.
    Hodaň, T., Haluza, P., Obdrzalek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: Proceedings of WACV (2017)Google Scholar
  11. 11.
    Oñoro-Rubio, D., López-Sastre, R.J., Redondo-Cabrera, C., Gil-Jiménez, P.: The challenge of simultaneous object detection and pose estimation: a comparative study. Image Vis. Comput. 79, 109–122 (2018)CrossRefGoogle Scholar
  12. 12.
    Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., Triebel, R.: Implicit 3D orientation learning for 6D object detection from RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 712–729. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01231-1_43CrossRefGoogle Scholar
  13. 13.
    Tevs, A., Huang, Q., Wand, M., Seidel, H.P., Guibas, L.: Relating shapes via geometric symmetries and regularities. ACM Trans. Graph. 33, 119 (2014)CrossRefGoogle Scholar
  14. 14.
    Thrun, S., Wegbreit, B.: Shape from symmetry. In: Proceedings of ICCV (2005)Google Scholar
  15. 15.
    Vidal, J., Lin, C.Y., Lladó, X., Martí, R.: A method for 6D pose estimation of free-form rigid objects using point pair features on range data. Sensors 18, 2678 (2018) CrossRefGoogle Scholar
  16. 16.
    Wang, Y., et al.: Symmetry hierarchy of man-made objects. Comput. Graph. Forum (2011)Google Scholar
  17. 17.
    Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. arXiv preprint (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sergey V. Alexandrov
    • 1
    Email author
  • Timothy Patten
    • 1
  • Markus Vincze
    • 1
  1. 1.Vision4Robotics Group, ACINTU WienViennaAustria

Personalised recommendations