Advertisement

Segmenting and Detecting Nematode in Coffee Crops Using Aerial Images

  • Alexandre J. OliveiraEmail author
  • Gleice A. AssisEmail author
  • Vitor GuiziliniEmail author
  • Elaine R. FariaEmail author
  • Jefferson R. SouzaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

A challenge in precision agriculture is the detection of pests in agricultural environments. This paper describes a methodology to detect the presence of the nematode pest in coffee crops. An Unmanned Aerial Vehicle (UAV) is used to obtain high-resolution RGB images of a commercial coffee plantation. The proposed methodology enables the extraction of visual features from image regions and uses supervised machine learning (ML) techniques to classify areas into two classes: pests and non-pests. Several learning techniques were compared using approaches with and without segmentation. Results demonstrate the methodology potential, with an average for the f-measure of 63% for Convolutional Neural Network (U-net) with manual segmentation.

Keywords

Pest detection Coffee crops UAV Machine learning 

Notes

Acknowledgements

The Titan Xp used for this research was donated by the NVIDIA Corporation. This work was supported by the Federal University of Uberlandia, CNPq scholarship (process number 163641/2018-8) and CNPq under Grant 400699/2016-8.

References

  1. 1.
    Food and agriculture organization of the united nations (2018). http://faostat.fao.org
  2. 2.
    Boisseau, M., Aribi, J., Sousa, F.R., Carneiro, R.M.D.G., Anthony, F.: Resistance to meloidogyne paranaensis in wild coffea arabica. Trop. Plant Pathol. 34, 38–41 (2009)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random forests. Mach. Learn. 5–32 (2001).  https://doi.org/10.1023/A:1010933404324CrossRefGoogle Scholar
  4. 4.
    Calderon, R., Montes-Borrego, M., Landa, B., Navas-Cortés, J.A., Zarco-Tejada, P.J.: Detection of downy mildew of opium poppy using high-resolution mult-spectral and thermal imagery acquired with an unmanned aerial vehicle. Prec. Agric. 15, 639–661 (2014)CrossRefGoogle Scholar
  5. 5.
    Calderon, R., Navas-Cortes, J.A., Lucena, C., Zarco-Tejada, P.J.: High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 139, 231–245 (2013)CrossRefGoogle Scholar
  6. 6.
    Campos, V.P., Villain, L.: Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. CAB International, Wallingford (2005)Google Scholar
  7. 7.
    Garcia-Ruiz, F., Sankaran, S., Maja, J.M., Lee, W.S., Rasmussen, J., Ehsani, R.: Comparison of two aerial imaging platforms for identification of huanglongbing-infected citrus trees. Comput. Electron. Agric. 91, 106–115 (2013)CrossRefGoogle Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  9. 9.
    Hall, M.A.: Correlation-based feature selection of discrete and numeric class machine learning (2000)Google Scholar
  10. 10.
    Otoboni, C.E.M., Gabia, A., Martins, A.S.: Determinação de áreas para o manejo localizado de nematoides em soja com o uso de imagens de vant. In: Congresso Brasileiro de Nematologia (2015)Google Scholar
  11. 11.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  12. 12.
    Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random forests. In: 12th International Conference on Computer Vision Workshops, pp. 1393–1400 (2009)Google Scholar
  13. 13.
    Salgado, S.M.L., Rezende, J.C., Nunes, J.A.R.: Selection of coffee progenies for resistance to nematode meloidogyne paranaensis in infested area. Crop Breed. Appl. Biotechnol. 14, 94–101 (2014)CrossRefGoogle Scholar
  14. 14.
    Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing). The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  15. 15.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  16. 16.
    Souza, J.R., Mendes, C.C., Guizilini, V., Vivaldini, K.C., Colturato, A., Ramos, F., Wolf, D.F.: Automatic detection of ceratocystis wilt in eucalyptus crops from aerial images. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3443–3448. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFederal University of UberlandiaUberlândiaBrazil
  2. 2.Institute of Agricultural SciencesFederal University of UberlandiaUberlândiaBrazil
  3. 3.Toyota Research InstituteLos AltosUSA

Personalised recommendations