Towards Automated Order Picking Robots for Warehouses and Retail

  • Richard BormannEmail author
  • Bruno Ferreira de Brito
  • Jochen Lindermayr
  • Marco Omainska
  • Mayank Patel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)


Order picking is one of the most expensive tasks in warehouses nowadays and at the same time one of the hardest to automate. Technical progress in automation technologies however allowed for first robotic products on fully automated picking in certain applications. This paper presents a mobile order picking robot for retail store or warehouse order fulfillment on typical packaged retail store items. This task is especially challenging due to the variety of items which need to be recognized and manipulated by the robot. Besides providing a comprehensive system overview the paper discusses the chosen techniques for textured object detection and manipulation in greater detail. The paper concludes with a general evaluation of the complete system and elaborates various potential avenues of further improvement.


Order picking Object localization Robot vision 


  1. 1.
    Abbenseth, J., Lopez, F.G., Henkel, C., Dörr, S.: Cloud-based cooperative navigation for mobile service robots in dynamic industrial environments. In: Proceedings of the Symposium on Applied Computing, pp. 283–288. ACM (2017)Google Scholar
  2. 2.
    Causo, A., Chong, Z.H., Ramamoorthy, L.: A robust robot design for item picking. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2018)Google Scholar
  3. 3.
    Chitta, S., Sucan, I., Cousins, S.: Moveit!. Robot. Autom. Mag. 19, 18–19 (2012)CrossRefGoogle Scholar
  4. 4.
    Correll, N., et al.: Analysis and observations from the first amazon picking challenge. IEEE Trans. Autom. Sci. Eng. 15(1), 172–188 (2018). Scholar
  5. 5.
    Dörr, S., Barsch, P., Gruhler, M., Lopez, F.G.: Cooperative longterm SLAM for navigating mobile robots in industrial applications. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 297–303, September 2016.
  6. 6.
    Eppner, C., et al.: Lessons from the amazon picking challenge: Four aspects of building robotic systems. In: Proceedings of Robotics: Science and Systems. AnnArbor, Michigan, June 2016.
  7. 7.
    Finlayson, G.D., Hordley, S.D., Xu, R.: Convex programming colour constancy with a diagonal-offset model. In: Proceedings of the IEEE International Conference on Image Processing, vol. 3, pp. III-948-51, September 2005.
  8. 8.
    Fischer, J., Arbeiter, G., Bormann, R., Verl, A.: A framework for object training and 6 DoF pose estimation. In: Proceedings of the 7th German Conference on Robotics (ROBOTIK), May 2012Google Scholar
  9. 9.
    Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2104–2109 (2013)Google Scholar
  10. 10.
    Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance evaluation: a comprehensive review. Eur. J. Oper. Res. 203(3), 539–549 (2010). Scholar
  11. 11.
    Henderson, C., Izquierdo, E.: Robust feature matching in the wild. In: Proceedings of Science and Information Conference (SAI), pp. 628–637, July 2015.
  12. 12.
    Hernandez, C., et al.: Team delft’s robot winner of the amazon picking challenge 2016. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 613–624. Springer, Cham (2017). Scholar
  13. 13.
    Hinterstoisser, S., et al.: Gradient response maps for real-time detection of textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 34, 876–888 (2012)CrossRefGoogle Scholar
  14. 14.
    Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4569–4574 (2011).
  16. 16.
    de Koster, R., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: a literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007). Scholar
  17. 17.
    Kramberger, A., Gams, A., Nemec, B., Ude, A.: Generalization of orientational motion in unit quaternion space. In: Proceedings of the IEEE International Conference on Humanoid Robots, pp. 808–813 (2016).
  18. 18.
    Kries, J.v.: Influence of adaptation on the effects produced by luminous stimuli. In: Sources of Color Science, pp. 120–126. The MIT Press, Cambridge, June 1970Google Scholar
  19. 19.
    Lopez, F.G., Abbenseth, J., Henkel, C., Dörr, S.: A predictive online path planning and optimization approach for cooperative mobile service robot navigation in industrial applications. In: Proceedings of the European Conference on Mobile Robots (ECMR), pp. 146–151 (2017)Google Scholar
  20. 20.
    Morrison, D., et al.: Cartman: The low-cost Cartesian Manipulator that won the Amazon Robotics Challenge. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2018Google Scholar
  21. 21.
    Romea, A.C., Torres, M.M., Srinivasa, S.: The moped framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(1), 1284–1306 (2011)Google Scholar
  22. 22.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sign. Process. 26(1), 43–49 (1978). Scholar
  23. 23.
    Sande, K.V.D., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1582–1596 (2010). Scholar
  24. 24.
    Schuster, M., Bormann, R., Steidl, D., Reynolds-Haertle, S., Stilman, M.: Stable stacking for the distributor’s pallet packing problem. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 3646–3651, October 2010Google Scholar
  25. 25.
    Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. Robot. Autom. Mag. 19, 72–82 (2012)CrossRefGoogle Scholar
  26. 26.
    Ude, A.: Filtering in a unit quaternion space for model-based object tracking. Robot. Auton. Syst. 28(2), 163–172 (1999)CrossRefGoogle Scholar
  27. 27.
    Wafy, M., Madbouly, A.M.M.: Increase Efficiency of SURF using RGB Color Space. Int. J. Adv. Comput. Sci. Appl. (IJACSA), 6(8) (2015).
  28. 28.
    Zeng, A., Yu, K.T., Song, S., Suo, D., Walker, Jr. E., Rodriguez, A., Xiao, J.: Multi-view self-supervised deep learning for 6D pose estimation in the amazon picking challenge. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2017)Google Scholar
  29. 29.
    Zucker, M., et al.: Chomp: covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Richard Bormann
    • 1
    Email author
  • Bruno Ferreira de Brito
    • 2
  • Jochen Lindermayr
    • 1
  • Marco Omainska
    • 1
  • Mayank Patel
    • 1
  1. 1.Fraunhofer IPARobot and Assistive SystemsStuttgartGermany
  2. 2.Delft University of Technology, Department of Cognitive RoboticsDelftThe Netherlands

Personalised recommendations