Advertisement

V-Disparity Based Obstacle Avoidance for Dynamic Path Planning of a Robot-Trailer

  • Efthimios TsiogasEmail author
  • Ioannis Kostavelis
  • Dimitrios Giakoumis
  • Dimitrios Tzovaras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

Structured space exploration with mobile robots is imperative for autonomous operation in challenging outdoor applications. To this end, robots should be equipped with global path planners that ensure coverage and full exploration of the operational area as well as dynamic local planners that address local obstacle avoidance. The paper at hand proposes a local obstacle detection algorithm based on a fast stereo vision processing step, integrated with a dynamic path planner to avoid the detected obstacles in real-time, while simultaneously keeping track of the global path. It considers a robot-trailer articulated system, based on which the trailer trace should cover the entire operational space in order to perform a dedicated application. This is achieved by exploiting a model predictive controller to keep track of the trailer path while performing stereo vision-based local obstacle detection. A global path is initially posed that ensures full coverage of the operational space and during robot’s motion, the detected obstacles are reported in the robot’s occupancy grid map, which is considered from a hybrid global and local planner approach to avoid them locally. The developed algorithm has been evaluated in a simulation environment and proved adequate performance.

Keywords

Stereo vision V-disparity Path planning Obstacle avoidance Model predictive control Dubins path 

Notes

Acknowledgment

This work has been supported by the EU Horizon 2020 funded project “BADGER (RoBot for Autonomous unDerGround trenchless opERations, mapping and navigation)” under the grant agreement with no: 731968.

References

  1. 1.
    Broggi, A., Caraffi, C., Fedriga, R.I., Grisleri, P.: Obstacle detection with stereo vision for off-road vehicle navigation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)-Workshops, pp. 65–65. IEEE (2005)Google Scholar
  2. 2.
    Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton. Robots 9(3), 247–253 (2000)CrossRefGoogle Scholar
  3. 3.
    De Cubber, G., Doroftei, D., Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Stereo-based terrain traversability analysis for robot navigation. In: IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance, Brussels, Belgium (2009)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Tech. rep, Sri International Menlo Park Ca Artificial Intelligence Center (1971)Google Scholar
  5. 5.
    Gao, Y., Ai, X., Wang, Y., Rarity, J., Dahnoun, N.: UV-disparity based obstacle detection with 3D camera and steerable filter. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 957–962. IEEE (2011)Google Scholar
  6. 6.
    Hu, Z., Lamosa, F., Uchimura, K.: A complete UV-disparity study for stereovision based 3D driving environment analysis. In: Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM 2005), pp. 204–211. IEEE (2005)Google Scholar
  7. 7.
    Khan, M., Hassan, S., Ahmed, S.I., Iqbal, J.: Stereovision-based real-time obstacle detection scheme for unmanned ground vehicle with steering wheel drive mechanism. In: 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), pp. 380–385. IEEE (2017)Google Scholar
  8. 8.
    Kostavelis, I., Boukas, E., Nalpantidis, L., Gasteratos, A.: Stereo-based visual odometry for autonomous robot navigation. Int. J. Adv. Robot. Syst. 13(1), 21 (2016)CrossRefGoogle Scholar
  9. 9.
    Kostavelis, I., Nalpantidis, L., Gasteratos, A.: Supervised traversability learning for robot navigation. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds.) TAROS 2011. LNCS (LNAI), vol. 6856, pp. 289–298. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23232-9_26CrossRefGoogle Scholar
  10. 10.
    Kostavelis, I., Nalpantidis, L., Gasteratos, A.: Collision risk assessment for autonomous robots by offline traversability learning. Robot. Auton. Syst. 60(11), 1367–1376 (2012)CrossRefGoogle Scholar
  11. 11.
    Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. In: Intelligent Vehicle Symposium, 2002, vol. 2, pp. 646–651. IEEE (2002)Google Scholar
  12. 12.
    Mandelbaum, R., McDowell, L., Bogoni, L., Reich, B., Hansen, M.: Real-time stereo processing, obstacle detection, and terrain estimation from vehicle-mounted stereo cameras. In: Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV 1998 (Cat. No. 98EX201), pp. 288–289. IEEE (1998)Google Scholar
  13. 13.
    Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3242–3249. IEEE (2014)Google Scholar
  14. 14.
    Musleh, B., de la Escalera, A., Armingol, J.M.: UV disparity analysis in urban environments. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2011. LNCS, vol. 6928, pp. 426–432. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27579-1_55CrossRefGoogle Scholar
  15. 15.
    Nalpantidis, L., Kragic, D., Kostavelis, I., Gasteratos, A.: Theta-disparity: an efficient representation of the 3D scene structure. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds.) Intelligent Autonomous Systems 13. AISC, vol. 302, pp. 795–806. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-08338-4_57CrossRefGoogle Scholar
  16. 16.
    Perrollaz, M., Spalanzani, A., Aubert, D.: Probabilistic representation of the uncertainty of stereo-vision and application to obstacle detection. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 313–318. IEEE (2010)Google Scholar
  17. 17.
    Sappa, A.D., Herrero, R., Dornaika, F., Gerónimo, D., López, A.: Road approximation in Euclidean and v-disparity space: a comparative study. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 1105–1112. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75867-9_138CrossRefGoogle Scholar
  18. 18.
    Soquet, N., Aubert, D., Hautiere, N.: Road segmentation supervised by an extended v-disparity algorithm for autonomous navigation. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 160–165. IEEE (2007)Google Scholar
  19. 19.
    Suganuma, N., Fujiwara, N.: An obstacle extraction method using virtual disparity image. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 456–461. IEEE (2007)Google Scholar
  20. 20.
    Tsiogas, E., Kostavelis, I., Kouros, G., Kargakos, A., Giakoumis, D., Tzovaras, D.: Surface exploration with a robot-trailer system for autonomous subsurface scanning. In: IEEE Smart World Congress (2019) Google Scholar
  21. 21.
    Yang, C., Jun-Jian, P., Jing, S., Lin-Lin, Z., Yan-Dong, T.: V-disparity based UGV obstacle detection in rough outdoor terrain. Acta Automatica Sin. 36(5), 667–673 (2010)Google Scholar
  22. 22.
    Zhao, J., Katupitiya, J., Ward, J.: Global correlation based ground plane estimation using v-disparity image. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 529–534. IEEE (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Efthimios Tsiogas
    • 1
    Email author
  • Ioannis Kostavelis
    • 1
  • Dimitrios Giakoumis
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Centre for Research and Technology Hellas - Information Technologies Institute (CERTH/ITI)ThessalonikiGreece

Personalised recommendations