Advertisement

Estimation of Wildfire Size and Location Using a Monocular Camera on a Semi-autonomous Quadcopter

  • Lucas Goncalves de Paula
  • Kristian Hyttel
  • Kenneth Richard Geipel
  • Jacobo Eduardo de Domingo Gil
  • Iuliu Novac
  • Dimitrios ChrysostomouEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11754)

Abstract

This paper addresses the problem of estimating the location and size of a wildfire, within the frame of a semi-autonomous recon and data analytics quadcopter. We approach this problem by developing three different algorithms, in order to accommodate this problem. Two of these taking into the account that the middle of the camera’s FOV is horizontal with respect to the drone it is mounted. The third algorithm relates to the bottom point of the FOV, directly under the drone in 3D space. The evaluation shows that having the pixels correlate to ratios in percentages rather than predetermined values, with respect to the edges of the fire, will result in better performance and higher accuracy. Placing the monocular camera horizontally in relation to the drone will provide an accuracy of 68.20%, while mounting the camera with an angle, will deliver an accuracy of 60.76%.

Keywords

Wildfire recognition Quadcopter analytics Image processing Area estimation 

References

  1. 1.
    Amanatiadis, A., Bampis, L., Karakasis, E.G., Gasteratos, A., Sirakoulis, G.: Real-time surveillance detection system for medium-altitude long-endurance unmanned aerial vehicles. Concurr. Comput.: Pract. Exp. 30(7), e4145 (2018).  https://doi.org/10.1002/cpe.4145CrossRefGoogle Scholar
  2. 2.
    Martínez-de Dios, J., Merino, L., Caballero, F., Ollero, A.: Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors 11(6), 6328–6353 (2011).  https://doi.org/10.3390/s110606328CrossRefGoogle Scholar
  3. 3.
    Gates, D.: Drone tracks fire hot spots in successful olympic forest test (2015). https://tinyurl.com/y4egvn9o. Accessed 13 Feb 2019
  4. 4.
    Hansen, S.M., Pedersen, M.S.: 83 dræbt i græske skovbrande (2018). https://tinyurl.com/y2jnvnvo. Accessed 04 Feb 2019
  5. 5.
    Lum, C.W., Summers, A., Carpenter, B., Rodriguez, A., Dunbabin, M.: Automatic wildfire detection and simulation using optical information from unmanned aerial systems. Technical report, SAE Technical Paper (2015)Google Scholar
  6. 6.
    Mackay, A.: Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J. Environ. Qual. 37(6), 2407 (2008).  https://doi.org/10.2134/jeq2008.0015brCrossRefGoogle Scholar
  7. 7.
    Merino, L., Caballero, F., Martinez-de Dios, J., Ollero, A.: Cooperative fire detection using unmanned aerial vehicles. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1884–1889. IEEE (2005).  https://doi.org/10.1109/ROBOT.2005.1570388
  8. 8.
    Park, M.: California fire explodes in size, is now largest in state history (2018). https://tinyurl.com/y5t7uapf. Accessed 04 Feb 2019
  9. 9.
    Romps, D.M., Seeley, J.T., Vollaro, D., Molinari, J.: Projected increase in lightning strikes in the United States due to global warming. Science 346(6211), 851–854 (2014).  https://doi.org/10.1126/science.1259100CrossRefGoogle Scholar
  10. 10.
    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018).  https://doi.org/10.1109/CVPR.2018.00474
  11. 11.
    Smith, B.: Are drones the future of firefighting? (2014). https://tinyurl.com/y5yvqv7k. Accessed 13 Feb 2019
  12. 12.
    Toft, E.: 80 skovbrande i sverige: Nu skal folk forlade et helt omrde (2018). https://tinyurl.com/dr-sverige. Accessed 04 Feb 2019
  13. 13.
    Yuan, C., Liu, Z., Zhang, Y.: Vision-based forest fire detection in aerial images for firefighting using UAVs. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1200–1205. IEEE (2016).  https://doi.org/10.1109/10.1109/ICUAS.2016.7502546
  14. 14.
    Zhao, Y., Ma, J., Li, X., Zhang, J.: Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 18(3), 712 (2018).  https://doi.org/10.3390/s18030712CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials and ProductionAalborg UniversityAalborg EastDenmark
  2. 2.Robotics and Automation GroupDepartment of Materials and Production, Aalborg UniversityAalborg EastDenmark

Personalised recommendations