Robust Rotation Interpolation Based on SO(n) Geodesic Distance
Conference paper
First Online:
Abstract
A novel interpolation algorithm for smoothing of successive rotation matrices based on the geodesic distance of special orthogonal group SO(n) is proposed. The derived theory is capable of achieving optimal interpolation and owns better accuracy and robustness than representatives.
Keywords
Rotation interpolation Special orthogonal group Motion analysisNotes
Acknowledgement
This work has been supported by National Natural Science Foundation of China under the grant of No. 41604025.
References
- 1.Chang, G.: Total least-squares formulation of Wahba’s problem. Electron. Lett. 51(17), 1334–1335 (2015)CrossRefGoogle Scholar
- 2.Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3D motion understanding. Int. J. Comput. Vis. 95(1), 29–51 (2011)CrossRefGoogle Scholar
- 3.Xu, S., Zhu, J., Li, Y., Wang, J., Lu, H.: Effective scaling registration approach by imposing emphasis on scale factor. Electron. Lett. 54(7), 422–424 (2018)CrossRefGoogle Scholar
- 4.Sabatini, A.M.: Quaternion based attitude estimation algorithm applied to signals from body-mounted gyroscopes. Electron. Lett. 40(10), 584–586 (2004)CrossRefGoogle Scholar
- 5.Niu, X., Wang, T.: C2-continuous orientation trajectory planning for robot based on spline quaternion curve. Assemb. Autom. 38(3), 282–290 (2018)CrossRefGoogle Scholar
- 6.Assa, A., Janabi-Sharifi, F.: Virtual visual servoing for multicamera pose estimation. IEEE/ASME Trans. Mech. 20(2), 789–798 (2015)CrossRefGoogle Scholar
- 7.Wu, J., Sun, Y., Wang, M., Liu, M.: Hand-eye calibration: 4D procrustes analysis approach. IEEE Trans. Instrum. Meas. (2019, in Press)Google Scholar
- 8.Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)CrossRefGoogle Scholar
- 9.Park, F.C., Ravani, B.: Smooth invariant interpolation of rotations. ACM Trans. Graph. 16(3), 277–295 (1997)CrossRefGoogle Scholar
- 10.Leeney, M.: Fast quaternion SLERP. Int. J. Comput. Math. 86(1), 79–84 (2009)MathSciNetCrossRefGoogle Scholar
- 11.Eberly, D.: A fast and accurate algorithm for computing SLERP. J. Graph. GPU Game Tools 15(3), 161–176 (2011)CrossRefGoogle Scholar
- 12.Wang, M., Tayebi, A.: Hybrid pose and velocity-bias estimation on SE(3) using inertial and landmark measurements. IEEE Trans. Autom. Control (2018, in Press)Google Scholar
- 13.Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern. Anal. Mach. Intell. PAMI-9(5), 698–700 (1987)CrossRefGoogle Scholar
- 14.Bar-Itzhack, I.Y.: New method for extracting the quaternion from a rotation matrix. AIAA J. Guid. Control Dyn. 23(6), 1085–1087 (2000)CrossRefGoogle Scholar
- 15.Markley, F.L.: Unit quaternion from rotation matrix. AIAA J. Guid. Control Dyn. 31(2), 440–442 (2008)CrossRefGoogle Scholar
- 16.Wu, J.: Optimal continuous unit quaternions from rotation matrices. AIAA J. Guid. Control Dyn. 42(2), 919–922 (2019)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019