Brief Announcement: Distributed Computing in the Asynchronous LOCAL Model

  • Carole Delporte-Gallet
  • Hugues Fauconnier
  • Pierre FraigniaudEmail author
  • Mikaël Rabie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)


We show that, for any task T associated to a locally checkable labeling (lcl), if T is solvable in t rounds by a deterministic algorithm in the local model, then T remains solvable by a deterministic algorithm in O(t) rounds in an asynchronous variant of the local model whenever \(t=O(\text {polylog}\, n)\).


  1. 1.
    Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Peleg, D.: Network synchronization with polylogarithmic overhead. In: 31st Symposium on Foundations of Computer Science (FOCS), pp. 514–522 (1990)Google Scholar
  3. 3.
    Castañeda, A., Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: Making local algorithms wait-free: the case of ring coloring. Theory Comput. Syst. 63(2), 344–365 (2019)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Delporte-Gallet, C., Fauconnier, H., Fraigniaud, P., Rabie, M.: Distributed computing in the asynchronous LOCAL model. CoRR abs/1904.07664 (2019)Google Scholar
  6. 6.
    Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In 33rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 367–376 (2014)Google Scholar
  7. 7.
    Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  11. 11.
    Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rybicki, J., Suomela, J.: Exact bounds for distributed graph colouring. In 22nd International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 46–60 (2015)CrossRefGoogle Scholar
  13. 13.
    Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40 (2013)CrossRefGoogle Scholar
  14. 14.
    Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: 25th ACM Symposium on Theory of Computing (STOC), pp. 201–207 (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carole Delporte-Gallet
    • 1
  • Hugues Fauconnier
    • 1
  • Pierre Fraigniaud
    • 1
    Email author
  • Mikaël Rabie
    • 2
  1. 1.IRIF, CNRS and Université de ParisParisFrance
  2. 2.LIP6, Sorbonne UniversitéParisFrance

Personalised recommendations