Advertisement

Robust Privacy-Preserving Gossip Averaging

  • Amaury Bouchra PiletEmail author
  • Davide Frey
  • Francois Taiani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)

Abstract

Decentralized solutions are emerging as promising candidates to overcome the privacy risks associated with centralized data services. Such solutions suffer however from their own range of privacy vulnerabilities, arising from untrusted and malicious peers. In this paper, we consider the emblematic problem of privacy-preserving decentralized averaging, and propose a novel gossip protocol that exchanges noise for several rounds before starting to exchange actual data. This makes it hard for an honest but curious attacker to know whether a user is transmitting noise or actual data. Our protocol and analysis do not assume a lock-step execution, and demonstrate improved resilience to colluding attackers. We prove the correctness of this protocol as well as several privacy results. Finally, we provide simulation results about the efficiency of our averaging protocol.

References

  1. 1.
    Allard, T., Frey, D., Giakkoupis, G., Lepiller, J.: Lightweight privacy-preserving averaging for the Internet of Things (2016)Google Scholar
  2. 2.
    Allard, T., Hébrail, G., Masseglia, F., Pacitti, E.: Chiaroscuro: transparency and privacy for massive personal time-series clustering. In: ACM SIGMOD 2015, pp. 779–794 (2015)Google Scholar
  3. 3.
    Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership protocol. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 292–301. ACM (2005)Google Scholar
  4. 4.
    Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine resilient random membership sampling. Comput. Netw. 53(13), 2340–2359 (2009)zbMATHCrossRefGoogle Scholar
  5. 5.
    Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy preserving distributed data mining. ACM SIGKDD Explor. Newsl. 4, 28–34 (2002)CrossRefGoogle Scholar
  6. 6.
    Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_33CrossRefGoogle Scholar
  7. 7.
    Danner, G., Jelasity, M.: Fully distributed privacy preserving mini-batch gradient descent learning. In: Bessani, A., Bouchenak, S. (eds.) DAIS 2015. LNCS, vol. 9038, pp. 30–44. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19129-4_3CrossRefGoogle Scholar
  8. 8.
    Dellenbach, P., Bellet, A., Ramon, J.: Hiding in the crowd: a massively distributed algorithm for private averaging with malicious adversaries. CoRR (2018)Google Scholar
  9. 9.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79228-4_1zbMATHCrossRefGoogle Scholar
  10. 10.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_14CrossRefGoogle Scholar
  11. 11.
    Frikken, K.B.: Secure multiparty computation. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, pp. 14.1–14.16. Chapman & Hall/CRC (2010)Google Scholar
  12. 12.
    Gao, H., Zhang, C., Ahmad, M., Wang, Y.: Privacy-preserving average consensus on directed graphs using push-sum. In: 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1–9. IEEE (2018)Google Scholar
  13. 13.
    Gupta, N., Chopra, N.: Confidentiality in distributed average information consensus. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6709–6714. IEEE (2016)Google Scholar
  14. 14.
    Hadjicostis, C.N.: Privacy preserving distributed average consensus via homomorphic encryption. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 1258–1263. IEEE (2018)Google Scholar
  15. 15.
    He, J., Cai, L.: Differential private noise adding mechanism: basic conditions and its application. In: 2017 American Control Conference (ACC), pp. 1673–1678. IEEE (2017)Google Scholar
  16. 16.
    He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Consensus-based privacy-preserving data aggregation. IEEE Trans. Autom. Control (2016)Google Scholar
  17. 17.
    He, J., Cai, L., Cheng, P., Pan, J., Shi, L.: Distributed privacy-preserving data aggregation against dishonest nodes in network systems. IEEE Internet Things J. 6(2), 1462–1470 (2019)CrossRefGoogle Scholar
  18. 18.
    He, J., Cai, L., Zhao, C., Cheng, P., Guan, X.: Privacy-preserving average consensus: privacy analysis and optimal algorithm design. IEEE Trans. Signal Inf. Process. Netw. 5(1), 127–138 (2019)CrossRefGoogle Scholar
  19. 19.
    Huang, Z., Mitra, S., Dullerud, G.: Differentially private iterative synchronous consensus. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, WPES 2012, pp. 81–90. ACM (2012)Google Scholar
  20. 20.
    Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)CrossRefGoogle Scholar
  21. 21.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based peer sampling. ACM ToCS 25(3), 8 (2007)CrossRefGoogle Scholar
  22. 22.
    Kempe, D., Dobra, A., Gehrke, J.E.: Gossip-based computation of aggregate information. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 482–491 (2003)Google Scholar
  23. 23.
    Lepiller, J.: Private decentralized aggregation (2016)Google Scholar
  24. 24.
    Liu, Q., Ren, X., Mo, Y.: Secure and privacy preserving average consensus. In: 2017 11th Asian Control Conference (ASCC), pp. 274–279. IEEE (2017)Google Scholar
  25. 25.
    Liu-Zhang, C.-D., Loss, J., Maurer, U., Moran, T., Tschudi, D.: Robust MPC: asynchronous responsiveness yet synchronous security. In: Theory and Practice of Multi-Party Computation Workshops (2019)Google Scholar
  26. 26.
    Manitara, N.E., Hadjicostis, C.N.: Privacy-preserving asymptotic average consensus. In: 2013 European Control Conference (ECC), pp. 760–765. IEEE (2013)Google Scholar
  27. 27.
    Mo, Y., Murray, R.M.: Privacy preserving average consensus. In: 53rd IEEE Conference on Decision and Control, pp. 2154–2159. IEEE (2014)Google Scholar
  28. 28.
    Nédelec, B., Tanke, J., Molli, P., Mostéfaoui, A., Frey, D.: An adaptive peer-sampling protocol for building networks of browsers. World Wide Web 21, 629–661 (2017)CrossRefGoogle Scholar
  29. 29.
    Nozari, E., Tallapragada, P., Cortés, J.: Differentially private average consensus: obstructions, trade-offs, and optimal algorithm design. Automatica 81, 221–231 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Ruan, M., Gao, H., Wang, Y.: Secure and privacy-preserving consensus. IEEE Trans. Autom. Control (2019)Google Scholar
  31. 31.
    Sheikh, R., Kumar, B., Mishra, D.K.: A distributed k-secure sum protocol for secure multi-party computations. J. Comput. 2, 68–72 (2010)Google Scholar
  32. 32.
    Thobaben, R., Dán, G., Sandberg, H.: Wiretap codes for secure multi-party computation. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 1349–1354. IEEE (2014)Google Scholar
  33. 33.
    Wang, A., Liao, X., He, H.: Event-triggered differentially private average consensus for multi-agent network. IEEE/CAA J. Automatica Sinica 6(1), 75–83 (2019)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, X., He, J., Cheng, P., Chen, J.: Privacy preserving collaborative computing: heterogeneous privacy guarantee and efficient incentive mechanism. IEEE Trans. Signal Process. 67(1), 221–233 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Wang, Y.: Privacy-preserving average consensus via state decomposition. IEEE Trans. Autom. Control (2019)Google Scholar
  36. 36.
    Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yin, T., Lv, Y., Yu, W.: Accurate privacy preserving average consensus. IEEE Trans. Circuits Syst. II: Express Briefs (2019)Google Scholar
  38. 38.
    Zhou, H., Yang, W., Yang, C.: Privacy preserving consensus under interception attacks. In: 2017 36th Chinese Control Conference (CCC), pp. 8485–8490. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amaury Bouchra Pilet
    • 1
    • 2
    Email author
  • Davide Frey
    • 1
  • Francois Taiani
    • 1
  1. 1.Univ Rennes, Inria, CNRS, IRISARennesFrance
  2. 2.École Normale Supérieure «Ulm»ParisFrance

Personalised recommendations