Advertisement

Ring Exploration of Myopic Luminous Robots with Visibility More Than One

  • Shota NagahamaEmail author
  • Fukuhito Ooshita
  • Michiko Inoue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)

Abstract

In this paper, we investigate ring exploration algorithms for autonomous myopic luminous robots. Myopic robots mean that they can observe nodes only within a certain fixed distance, and luminous robots mean that they have light devices that can emit a color from a set of constant number of colors. We consider the constraint that the visible distance is any constant of at least two and the number of colors of light devices is two. As a main contribution, in the fully synchronous, semi-synchronous, and asynchronous models, we prove that (1) two robots are necessary and sufficient to achieve perpetual exploration and (2) three robots are necessary and sufficient to achieve terminating exploration, where perpetual exploration requires every robot to visit every node infinitely many times and terminating exploration requires robots to terminate after every node is visited by a robot at least once. These results show the power of large visibility for luminous robots because, when the visible distance is one and the number of colors is two, three and four robots are necessary to achieve perpetual and terminating exploration, respectively, in the semi-synchronous and asynchronous models. We also show that the proposed perpetual exploration algorithm is universal, that is, the algorithm achieves perpetual exploration from any solvable initial configuration with two robots. On the other hand, we show that no universal algorithm exists for terminating exploration with three robots.

Keywords

Autonomous mobile robots Exploration problem Discrete environments 

References

  1. 1.
    Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15763-9_29CrossRefGoogle Scholar
  2. 2.
    Bonnet, F., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Asynchronous exclusive perpetual grid exploration without sense of direction. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 251–265. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25873-2_18CrossRefGoogle Scholar
  3. 3.
    Bramas, Q., Devismes, S., Lafourcade, P.: Brief announcement: infinite grid exploration by disoriented robots. In: 26th International Colloquium onStructural Information and Communication Complexity SIROCCO 2019. L’Aquila, Italy, Jul 2019. https://hal.archives-ouvertes.fr/hal-02145822CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 208–219. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16926-7_20CrossRefGoogle Scholar
  5. 5.
    D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering andexclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017).  https://doi.org/10.1007/s00446-016-0274-yMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theoret. Comput. Sci. 609, 171–184 (2016).  https://doi.org/10.1016/j.tcs.2015.09.018MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious agents with local vision. In: IEEE 33rd International Conference on Distributed Computing Systems, pp. 347–356 (2013).  https://doi.org/10.1109/ICDCS.2013.55
  8. 8.
    Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Ring exploration by oblivious robots with vision limited to 2 or 3. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 363–366. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03089-0_31CrossRefGoogle Scholar
  9. 9.
    Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33536-5_7CrossRefGoogle Scholar
  10. 10.
    Devismes, S., Lamani, A., Petit, F., Tixeuil, S.: Optimal torus exploration by oblivious robots. In: Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 183–199. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26850-7_13CrossRefGoogle Scholar
  11. 11.
    Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theoret. Comput. Sci. 498, 10–27 (2013).  https://doi.org/10.1016/j.tcs.2013.05.031MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theoret. Comput. Sci. 411(14–15), 1583–1598 (2010).  https://doi.org/10.1016/j.tcs.2010.01.007MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: Ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013).  https://doi.org/10.1007/s00453-011-9611-5MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005).  https://doi.org/10.1016/j.tcs.2005.01.001MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411(34–36), 3235–3246 (2010).  https://doi.org/10.1016/j.tcs.2010.05.020MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03232-6_20CrossRefGoogle Scholar
  17. 17.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999).  https://doi.org/10.1137/S009753979628292XMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchronous mobile robots in the three-dimensional Euclidean space. J. ACM 64(3), 16 (2017).  https://doi.org/10.1145/3060272MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shota Nagahama
    • 1
    Email author
  • Fukuhito Ooshita
    • 1
  • Michiko Inoue
    • 1
  1. 1.Nara Institute of Science and TechnologyIkomaJapan

Personalised recommendations