Reducing the Number of Messages in Self-stabilizing Protocols

  • Anaïs DurandEmail author
  • Shay Kutten
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11914)


Self-stabilizing algorithms recover from sever faults, such as inconsistent initialization. Traditionally, when designing a self-stabilizing message-passing algorithm, the main goal was to reduce the time until stabilization. The message cost was neglected. In this work, we strive to reduce the number of messages sent on the average per time period. As a tool, we present a stabilizing module that can message-efficiently determine when a task (from a wide family of tasks) is terminated. False positive detection is possible, but only when faults occurred. This module can then be used in the transformation of non self-stabilizing algorithms into self-stabilizing ones.


Fault-tolerance Self-stabilization Message complexity Quiescence detection Termination detection 


  1. 1.
    Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its application to self-stabilization. Theor. Comput. Sci. 186(1–2), 199–229 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time optimal self-stabilizing synchronization. In: STOC 1993, pp. 652–661 (1993)Google Scholar
  3. 3.
    Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking and correction (extended abstract). In: FOCS 1991, pp. 268–277 (1991)Google Scholar
  4. 4.
    Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local checking and global reset. In: WDAG 1994, pp. 326–339 (1994)CrossRefGoogle Scholar
  5. 5.
    Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-stabilizing distributed protocols. In: FOCS 1991, pp. 258–267 (1991)Google Scholar
  6. 6.
    Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In: PODC 2004, pp. 150–159 (2004)Google Scholar
  7. 7.
    Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree networks. In: WSS 1999, pp. 78–85 (1999)Google Scholar
  8. 8.
    Chandy, K.M., Misra, J.: An example of stepwise refinement of distributed programs: quiescence detection. ACM TOPLAS 8(3), 326–343 (1986)CrossRefGoogle Scholar
  9. 9.
    Cournier, A., Datta, A.K., Devismes, S., Petit, F., Villain, V.: The expressive power of snap-stabilization. Theor. Comput. Sci. 626, 40–66 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-passing systems. J. Parallel Distrib. Comput. 70(12), 1220–1230 (2010)CrossRefGoogle Scholar
  11. 11.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)CrossRefGoogle Scholar
  12. 12.
    Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations. Inf. Process. Lett. 11(1), 1–4 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dolev, S.: Self-stabilization. MIT press, Cambridge (2000)CrossRefGoogle Scholar
  14. 14.
    Francez, N.: Distributed termination. ACM TOPLAS 2(1), 42–55 (1980)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Francez, N., Rodeh, M., Sintzoff, M.: Distributed termination with interval assertions. In: Díaz, J., Ramos, I. (eds.) ICFPC 1981. LNCS, vol. 107, pp. 280–291. Springer, Heidelberg (1981). Scholar
  16. 16.
    Hendler, D., Kutten, S.: Bounded-wait combining: constructing robust and high-throughput shared objects. Distrib. Comput. 21(6), 405–431 (2009)CrossRefGoogle Scholar
  17. 17.
    Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Distrib. Comput. 7(1), 17–26 (1993)CrossRefGoogle Scholar
  18. 18.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self-stabilizing verification, computation, and fault detection of an MST. In: PODC 2011, pp. 311–320 (2011)Google Scholar
  19. 19.
    Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4), 215–233 (2010)CrossRefGoogle Scholar
  20. 20.
    Levé, F., Mohamed, K., Villain, V.: Snap-stabilizing PIF on arbitrary connected networks in message passing model. In: SSS 2016, pp. 281–297 (2016)Google Scholar
  21. 21.
    Matocha, J., Camp, T.: A taxonomy of distributed termination detection algorithms. J. Syst. Softw. 43(3), 207–221 (1998)CrossRefGoogle Scholar
  22. 22.
    Varghese, G.: Self-stabilization by counter flushing. SIAM J. Comput. 30(2), 486–510 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sorbonne Université, CNRS, LIP6ParisFrance
  2. 2.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations