Advertisement

CyberDect. A Novel Approach for Cyberbullying Detection on Twitter

  • Antonio López-Martínez
  • José Antonio García-Díaz
  • Rafael Valencia-García
  • Antonio Ruiz-MartínezEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1124)

Abstract

Bullying is the deliberate physical and psychological abuse that a child receives from other children. The term cyberbullying has recently emerged to denote a new type of bullying that takes place over digital platforms, where the stalkers can perform their crimes on the vulnerable victims. In severe cases, the harassment has lead the victims to the extreme causing irreparable damage or leading them to suicide. In order to stop cyberbullying, the scientific community is developing effective tools capable of detecting the harassment as soon as possible; however, these detection systems are still in an early stage and must be improved. Our contribution is CyberDect, an online-tool that seeks on Social Networks indications of harassment. In a nutshell, our proposal combines Open Source Intelligence tools with Natural Language Processing techniques to analyse posts seeking for abusive language towards the victim. The evaluation of our proposal has been performed with a case-study that consisted in monitor two real high school accounts from Spain.

Keywords

Cyberbullying Natural Language Processing Open Source Intelligence Twitter 

Notes

Acknowledgements

This work has been supported by the Spanish National Research Agency (AEI) and the European Regional Development Fund (FEDER/ERDF) through project KBS4FIA (TIN2016-76323-R).

References

  1. 1.
    Agarwal, B., Mittal, N.: Semantic orientation-based approach for sentiment analysis. In: Agarwal, B., Mittal, N. (eds.) Prominent Feature Extraction for Sentiment Analysis. SC, pp. 77–88. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-25343-5_6CrossRefGoogle Scholar
  2. 2.
    Anderson, J., Bresnahan, M., Musatics, C.: Combating weight-based cyberbullying on facebook with the dissenter effect. Cyberpsychol. Behav. Soc. Netw. 17(5), 281–286 (2014)CrossRefGoogle Scholar
  3. 3.
    Apolinardo-Arzube, O., García-Díaz, J.A., Medina-Moreira, J., Luna-Aveiga, H., Valencia-García, R.: Evaluating information-retrieval models and machine-learning classifiers for measuring the social perception towards infectious diseases. Appl. Sci. 9(14), 2858 (2019)CrossRefGoogle Scholar
  4. 4.
    Apolinario, Ó., Medina-Moreira, J., Luna-Aveiga, H., García-Díaz, J.A., Valencia-García, R., Estrade-Cabrera, J.I.: Prevención de enfermedades infecciosas basada en el análisis inteligente en RRSS y participación ciudadana. Proces. del Leng. Nat. 63, 163–166 (2019)Google Scholar
  5. 5.
    Banker, K.: MongoDB in Action. Manning Publications Co., New York (2011)Google Scholar
  6. 6.
    Bazzell, M.: Open Source Intelligence Techniques: Resources for Searching and Analyzing Online Information. CreateSpace Independent Publishing Platform, Scotts Valley (2016)Google Scholar
  7. 7.
    Beydoun, G., Low, G., García-Sánchez, F., Valencia-García, R., Martínez-Béjar, R.: Identification of ontologies to support information systems development. Inf. Syst. 46, 45–60 (2014)CrossRefGoogle Scholar
  8. 8.
    Calmaestra, J.: Yo a eso no juego: bullying y Ciberbullying en la infancia. Save the Children (2016)Google Scholar
  9. 9.
    Fang, X., Zhan, J.: Sentiment analysis using product review data. J. Big Data 2(1), 5 (2015)CrossRefGoogle Scholar
  10. 10.
    Fersini, E., Rosso, P., Anzovino, M.: Overview of the task on automatic misogyny identification at IberEval 2018. In: IberEval@ SEPLN, pp. 214–228 (2018)Google Scholar
  11. 11.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, vol. 1, no. 12 (2009)Google Scholar
  12. 12.
    Goldberg, Y., Levy, O.: Word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)
  13. 13.
    Hinduja, S., Patchin, J.W.: Bullying, cyberbullying, and suicide. Arch. Suicide Res. 14(3), 206–221 (2010)CrossRefGoogle Scholar
  14. 14.
    Hinduja, S., Patchin, J.W.: Cyberbullying fact sheet: identification, prevention, and response. Cyberbullying Research Center (2010). Accessed 30 Jan 2011Google Scholar
  15. 15.
    Hon, L., Varathan, K.: Cyberbullying detection system on twitter. IJABM 1(1), 1–11 (2015)Google Scholar
  16. 16.
    Hornik, K.: OpenNLP: apache OpenNLP tools interface. R package version 0.2-5 (2015)Google Scholar
  17. 17.
    Hosseinmardi, H., Mattson, S.A., Rafiq, R.I., Han, R., Lv, Q., Mishra, S.: Detection of cyberbullying incidents on the instagram social network. arXiv preprint arXiv:1503.03909 (2015)
  18. 18.
    Jung, H., Park, H.A., Song, T.M.: Ontology-based approach to social data sentiment analysis: detection of adolescent depression signals. J. Med. Internet Res. 19(7), e259 (2017)CrossRefGoogle Scholar
  19. 19.
    Kansara, K.B., Shekokar, N.M.: A framework for cyberbullying detection in social network. Int. J. Curr. Eng. Technol. 5(1), 494–498 (2015)Google Scholar
  20. 20.
    Larrañaga, E., Yubero, S., Ovejero, A., Navarro, R.: Loneliness, parent-child communication and cyberbullying victimization among Spanish youths. Comput. Hum. Behav. 65, 1–8 (2016)CrossRefGoogle Scholar
  21. 21.
    Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)Google Scholar
  22. 22.
    Mouheb, D., Abushamleh, M.H., Abushamleh, M.H., Al Aghbari, Z., Kamel, I.: Real-time detection of cyberbullying in arabic twitter streams. In: 2019 10th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2019)Google Scholar
  23. 23.
    Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network? The structure of the twitter follow graph. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 493–498. ACM (2014)Google Scholar
  24. 24.
    Pagolu, V.S., Reddy, K.N., Panda, G., Majhi, B.: Sentiment analysis of twitter data for predicting stock market movements. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 1345–1350. IEEE (2016)Google Scholar
  25. 25.
    Penalver-Martinez, I., et al.: Feature-based opinion mining through ontologies. Expert Syst. Appl. 41(13), 5995–6008 (2014)CrossRefGoogle Scholar
  26. 26.
    Pontiki, M., et al.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 19–30 (2016)Google Scholar
  27. 27.
    Pujol, F.A., et al.: Detección automática de ciberbullying a través del procesamiento digital de imágenes. In: VIII International Congress of Physiology and Education (2016)Google Scholar
  28. 28.
    Richelson, J.T.: The US Intelligence Community. Routledge, New York (2018)CrossRefGoogle Scholar
  29. 29.
    Robinson, E., et al.: Parental involvement in preventing and responding to cyberbullying. Fam. Matters 92(92), 68 (2013)Google Scholar
  30. 30.
    Rosa, H., Matos, D., Ribeiro, R., Coheur, L., Carvalho, J.P.: A “deeper” look at detecting cyberbullying in social networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)Google Scholar
  31. 31.
    Rosa, H., et al.: Automatic cyberbullying detection: a systematic review. Comput. Hum. Behav. 93, 333–345 (2019)CrossRefGoogle Scholar
  32. 32.
    Rosa, R.L., Rodríguez, D.Z., Schwartz, G.M., de Campos Ribeiro, I., Bressan, G.: Monitoring system for potential users with depression using sentiment analysis. In: 2016 IEEE International Conference on Consumer Electronics (ICCE), pp. 381–382. IEEE (2016)Google Scholar
  33. 33.
    Salas-Zárate, M.P., López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., Alor-Hernández, G.: A study on LIWC categories for opinion mining in Spanish reviews. J. Inf. Sci. 40(6), 749–760 (2014)CrossRefGoogle Scholar
  34. 34.
    Salas-Zárate, M.P., Medina-Moreira, J., Lagos-Ortiz, K., Luna-Aveiga, H., Rodriguez-Garcia, M.A., Valencia-Garcia, R.: Sentiment analysis on tweets about diabetes: an aspect-level approach. Comput. Math. Methods Med. 2017, 1–9 (2017)CrossRefGoogle Scholar
  35. 35.
    Salas-Zárate, M.P., Valencia-García, R., Ruiz-Martínez, A., Colomo-Palacios, R.: Feature-based opinion mining in financial news: an ontology-driven approach. J. Inf. Sci. 43(4), 458–479 (2017)CrossRefGoogle Scholar
  36. 36.
    Salawu, S., He, Y., Lumsden, J.: Approaches to automated detection of cyberbullying: a survey. IEEE Trans. Affect. Comput. 99, 1 (2017)CrossRefGoogle Scholar
  37. 37.
    Sanchez, H., Kumar, S.: Twitter bullying detection. Ser. NSDI 12(2011), 15 (2011)Google Scholar
  38. 38.
    Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(3), 813–830 (2015)CrossRefGoogle Scholar
  39. 39.
    Slonje, R., Smith, P.K.: Cyberbullying: another main type of bullying? Scand. J. Psychol. 49(2), 147–154 (2008)CrossRefGoogle Scholar
  40. 40.
    Tahmasbi, N., Rastegari, E.: A socio-contextual approach in automated detection of cyberbullying. In: Hawaii International Conference on System Sciences (HICSS), pp. 2151–2160 (2018)Google Scholar
  41. 41.
    Yamamoto, Y.: Twitter4J Java library (2017)Google Scholar
  42. 42.
    Zhao, R., Zhou, A., Mao, K.: Automatic detection of cyberbullying on social networks based on bullying features. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, p. 43. ACM (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de InformáticaUniversidad de MurciaMurciaSpain

Personalised recommendations