A Web Service Composition Method Based on OpenAPI Semantic Annotations

  • Andrei NeteduEmail author
  • Sabin C. BuragaEmail author
  • Paul DiacEmail author
  • Liana ŢucărEmail author
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 41)


Automatic Web service composition is a research direction aimed to improve the process of aggregating multiple Web services to create some new, specific functionality. The use of semantics is required as the proper semantic model with annotation standards is enabling the automation of reasoning required to solve non-trivial cases. Most previous models are limited in describing service parameters as concepts of a simple hierarchy. Our proposal is increasing the expressiveness at the parameter level, using inherited concept properties that define attributes The paper also describes how parameters are matched to create, in an automatic manner, valid compositions. The composition algorithm is practically used on descriptions of Web services implemented by REST APIs expressed by OpenAPI specifications. Our proposal uses knowledge models to enhance these OpenAPI constructs with JSON-LD annotations in order to obtain better compositions for involved services.


Web service composition Semantics JSON-LD OpenAPI 


  1. 1.
    Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL. Elsevier, Waltham (2011)Google Scholar
  2. 2.
    Baccar, S., Rouached, M., Verborgh, R., Abid, M.: Declarative web services composition using proofs. Serv. Oriented Comput. Appl. 1–19 (2018)Google Scholar
  3. 3.
    Blake, M.B., Cheung, W., Jaeger, M.C., Wombacher, A.: WSC-06: the web service challenge. In: The 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, CEC/EEE 2006, p. 62. IEEE (2006)Google Scholar
  4. 4.
    Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L.: Flow-based service selection for web service composition supporting multiple QoS classes. In: 2007 IEEE International Conference on Web Services, ICWS 2007, pp. 743–750. IEEE (2007)Google Scholar
  5. 5.
    Cremaschi, M., De Paoli, F.: A practical approach to services composition through light semantic descriptions. In: European Conference on Service-Oriented and Cloud Computing, pp. 130–145. Springer (2018)Google Scholar
  6. 6.
    Erl, T.: SOA: Principles of Service Design. Prentice Hall, Upper Saddle River (2007)Google Scholar
  7. 7.
    Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services matchmaking. Int. J. Approx. Reason. 48(3), 808–828 (2008)CrossRefGoogle Scholar
  8. 8.
    Fielding, R.T.: Chapter 5: RE presentational state transfer (REST). Architectural styles and the design of network-based software architectures, Ph. D. thesis (2000)Google Scholar
  9. 9.
    Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: RESTful service composition at a glance: a survey. J. Netw. Comput. Appl. 60, 32–53 (2016)CrossRefGoogle Scholar
  10. 10.
    Guha, R.V., Brickley, D., Macbeth, S.: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)CrossRefGoogle Scholar
  11. 11.
    Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning with OWLS-xplan. In: Proceedings of the 1st International AAAI Fall Symposium on Agents and the Semantic Web, pp. 55–62. sn (2005)Google Scholar
  12. 12.
    Lécué, F., Léger, A.: A formal model for semantic web service composition. In: International Semantic Web Conference, pp. 385–398. Springer (2006)Google Scholar
  13. 13.
    Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of techniques and tools. ACM Comput. Surv. (CSUR) 48(3), 33 (2016)Google Scholar
  14. 14.
    Levina, O.: Towards a platform architecture for digital content. In: Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, ICETE 2018, Volume 1: DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, pp. 340–347. SciTePress (2018)Google Scholar
  15. 15.
    Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S., Paolucci, M., Sycara, K., Mcguinness, D.L., Sirin, E., Srinivasan, N.: Bringing semantics to web services with OWL-S. World Wide Web 10(3), 243–277 (2007)CrossRefGoogle Scholar
  16. 16.
    Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet Comput. 8(6), 51–59 (2004)CrossRefGoogle Scholar
  17. 17.
    Peng, C., Goswami, P., Bai, G.: Fuzzy matching of OpenAPI described REST services. Proc. Comput. Sci. 126, 1313–1322 (2018)CrossRefGoogle Scholar
  18. 18.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: International Workshop on Semantic Web Services and Web Process Composition, pp. 43–54. Springer (2004)Google Scholar
  19. 19.
    Serrano Suarez, D.F.: Automated API discovery, composition, and orchestration with linked metadata. Ph.D. thesis (2018)Google Scholar
  20. 20.
    Sferruzza, D., Rocheteau, J., Attiogbé, C., Lanoix, A.: Extending OpenAPI 3.0 to build web services from their specification. In: International Conference on Web Information Systems and Technologies (2018)Google Scholar
  21. 21.
    Sheth, A.P., Gomadam, K., Ranabahu, A.H.: Semantics enhanced services: Meteor-s, SAWSDL and SA-REST. Bull. Tech. Comm. Data Eng. 31(3), 8 (2008)Google Scholar
  22. 22.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  23. 23.
    Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. Web Semant. Sci. Serv. Agents World Wide Web 1(1), 27–46 (2003)CrossRefGoogle Scholar
  24. 24.
    Timm, J.T., Gannod, G.C.: A model-driven approach for specifying semantic web services. In: IEEE International Conference on Web Services, pp. 313–320. IEEE (2005)Google Scholar
  25. 25.
    Ventura, D., Verborgh, R., Catania, V., Mannens, E.: Autonomous composition and execution of REST APIs for smart sensors. In: SSN-TC/OrdRing@ ISWC, pp. 13–24 (2015)Google Scholar
  26. 26.
    Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan, M., Van de Walle, R.: Survey of semantic description of REST APIs. In: REST: Advanced Research Topics and Practical Applications, pp. 69–89. Springer (2014)Google Scholar
  27. 27.
    Wang, P., Chao, K.M., Lo, C.C., Huang, C.L., Li, Y.: A fuzzy model for selection of QoS-aware web services. In: 2006 IEEE International Conference on e-Business Engineering, ICEBE 2006, pp. 585–593. IEEE (2006)Google Scholar
  28. 28.
    Wittern, E., Cha, A., Laredo, J.A.: Generating GraphQL-wrappers for REST (-like) APIs. In: International Conference on Web Engineering, pp. 65–83. Springer (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Alexandru Ioan Cuza University of IaşiIaşiRomania

Personalised recommendations