Advertisement

Metrological Assurance of Environmental Estimation of Soil Pollution by Heavy Metals by a Geoinformation Cyber-Physical System

  • Marina Meshalkina
  • Valerii TsvetkovEmail author
  • Nadezhda Kryzhova
  • Elena Sokolova
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 95)

Abstract

The article is devoted to estimation of the concentration of heavy metals in soils. A Geo-Information Cyber-Physical system was used to visualize the measurement results. The metrological assurance of the reliability of pollution boundaries selection has been evaluated.

Keywords

Heavy metals Geo-information system Cyber-physical system Metrological assurance 

References

  1. 1.
    He, B., Yun, Z.J., Shi, J.B., Jiang, G.B.: Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chin. Sci. Bull. 58(2), 134–140 (2013)CrossRefGoogle Scholar
  2. 2.
    Peña-Fernández, A., Lobo-Bedmar, M.C., González-Muñoz, M.J.: Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain). Environ. Res. 136, 40–46 (2015)CrossRefGoogle Scholar
  3. 3.
    Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., Teng, J.: Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 156(2), 251–260 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhao, Z., Hazelton, P.: Evaluation of accumulation and concentration of heavy metals in different urban roadside soil types in Miranda Park, Sydney. J. Soils Sediments 16(11), 548–556 (2016)CrossRefGoogle Scholar
  5. 5.
    Curran-Cournane, F., Lear, G., Schwendenmann, L., Khin, J.: Heavy metal soil pollution is influenced by the location of green spaces within urban settings. Soil Res. 53(3), 306–315 (2015)CrossRefGoogle Scholar
  6. 6.
    Gall, J.E., Boyd, R.S., Rajakaruna, N.: Transfer of heavy metals through terrestrial food webs: a review. Environ. Monit. Assess. 187(4), 201 (2015)CrossRefGoogle Scholar
  7. 7.
    Hernández, A.J., Pastor, J.: Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ. Geochem. Health 30(2), 127–133 (2008)CrossRefGoogle Scholar
  8. 8.
    Pehluvan, M., Karlidag, H., Turan, M.: Heavy metal levels of mulberry (Morus alba L.) grown at different distances from the roadsides. J. Anim. Plant Sci. 22(3), 665–670 (2012)Google Scholar
  9. 9.
    Nabulo, G., Oryem-Origa, H., Diamond, M.: Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 101(1), 42–52 (2006)CrossRefGoogle Scholar
  10. 10.
    Alloway, B.J.: Heavy Metals in Soils. Environmental Pollution, pp. 11–50. Springer, Dordrecht (2013). In: Alloway, B.J. (ed.) Ch. Chapter 2CrossRefGoogle Scholar
  11. 11.
    Russian State Standard 17.4.4.02-2017 Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological, helmintological analysis [GOST 17.4.4.02-2017 Ohrana prirodyi. Pochvyi. Metodyi otbora i podgotovki prob dlya himicheskogo, bakteriologicheskogo, gelmintologicheskogo analiza]Google Scholar
  12. 12.
    Russian State Standard 33850-2016 Soils. Determination of chemical composition by X-Ray fluorescence spectrometry [GOST 33850-2016 Pochvyi. Opredelenie himicheskogo sostava metodom rentgenofluorestsentnoy spektrometrii]Google Scholar
  13. 13.
    USEPA Method 6200: field portable x-ray fluorescence spectrometry for the determination of elemental concentrations in soil and sediment. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf
  14. 14.
    Chakraborty, S., Man, T., Paulette, L., Deb, S., Li, B., Weindorf, D.C., Frazier, M.: Rapid assessment of smelter/mining soil contamination via portable X-ray fluorescence spectrometry and indicator kriging. Geoderma 306, 108–119 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Hu, W., Huang, B., Weindorf, D.C., Chen, Y.: Metals analysis of agricultural soils via portable x-ray fluorescence spectrometry. Bull. Environ. Contam. Toxicol. 92(4), 420–426 (2014)CrossRefGoogle Scholar
  16. 16.
    Jang, M.: Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites. Environ. Geochem. Health 32(3), 207–216 (2010)CrossRefGoogle Scholar
  17. 17.
    Kalnicky, D.J., Singhvi, R.: Field portable XRF analysis of environmental samples. J. Hazard. Mater. 83(1–2), 93–122 (2001)CrossRefGoogle Scholar
  18. 18.
    Peinado, F.M., Ruano, S.M., González, M.G.B., Molina, C.E.: A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma 159(1–2), 76–82 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Paulette, L., Man, T., Weindorf, D.C., Person, T.: Rapid assessment of soil and contaminant variability via portable x-ray fluorescence spectroscopy: Copşa Mică. Romania. Geoderma 243–244, 130–140 (2015)CrossRefGoogle Scholar
  20. 20.
    Russian Methodical instructions 2.1.7.730-99 Hygienic evaluation of soil in residential areas [MU 2.1.7.730-99 Gigienicheskaya otsenka kachestva pochvyi naselennyih mest]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marina Meshalkina
    • 1
  • Valerii Tsvetkov
    • 1
    Email author
  • Nadezhda Kryzhova
    • 1
  • Elena Sokolova
    • 2
  1. 1.Peter the Great St.Petersburg Polytechnic UniversitySaint PetersburgRussia
  2. 2.RiverD International B.V.RotterdamThe Netherlands

Personalised recommendations