Advertisement

Cyber-Physical Systems in Complex Technologies and Process Control

  • Branko Katalinić
  • Dmitry Kostenko
  • Vadim A. OnufrievEmail author
  • Vyacheslav V. Potekhin
Conference paper
  • 187 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 95)

Abstract

In this paper the authors examine two main aspects of complex technological processes control implemented within the paradigm of a cyber-physical management system. These include controlled multi-agent cooperation (such as smart grids) and identification of mathematical models connecting different key performance indicators. The authors of this paper claim that system architecture based on intelligent agents’ concept outperforms ad-hoc implementations of distributed systems and architectures. The main advantages of a multi-agent system are the presence of a decision making layer, theory-based fault tolerance and scalability. Advanced distributed coordination and decision-making techniques allow more effective operation and availability. The internal general computational framework presented in the paper can be used for solving business tasks (for example, the task of routine optimization as a part of underlying multi-agent framework). The aforementioned system has been applied to solve a problem of power grid member communication. This multi-agent system was designed to control a power redistribution grid, containing one power plant and multiple zero-energy buildings (ZEBs), connected with a distributed knowledge base.

Keywords

Industry 4.0 Identification Digital twin Multicriteria optimisation 

Notes

Acknowledgements

The article is published with support of the project Erasmus+ 573545-EPP-1-2016-DE-EPPKA2-CBHE-JP “Applied curricula in space exploration and intelligent robotic systems (APPLE)” and describes the part of the project conducted at Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.

References

  1. 1.
    Bassi, L.: Industry 4.0: hope, hype or revolution? In: IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), pp. 1–6 (2017)Google Scholar
  2. 2.
    Yefremov, A.Y., Maksimov, D.Y.: Setetsentricheskaya sistema upravleniya – chto vkladyvayetsya v eto ponyatiye? [Network-centric control system - that is embedded in this concept]. In: Trudy 3-y Vserossiyskoy konferentsii s mezhdunarodnym uchastiyem « Tekhnicheskiye i programmnyye sredstva sistem upravleniya, kontrolya i izmereniya » [Proceedings of the 3rd Russian Conference on Technical and Software Control Systems, Control and Measurement] (UKI-2012, Moscow), pp. 158–161. IPU RAN (2012). (in Russian)Google Scholar
  3. 3.
    Skobelev, P.O., Tsarev, A.V.: Setetsentricheskiy podkhod k sozdaniyu bolshikh multiagentnykh sistem dlya adaptivnogo upravleniya resursami v realnom vremeni [The network-centric approach to creation of big multi-agent system for adaptive real-time resource management]. In: Materialy Mezhdunarodnoy nauchno-prakticheskoy multikonferentsii “Upravleniye bolshimi sistemami” [Proceedings of the International Scientific and Practical Multi-conference “Control of Big Systems”], p. 267. IPU RAN Publ. (2011). (in Russian)Google Scholar
  4. 4.
    Skobelev, P.O.: Situatsionnoye upravleniye i multiagentnyye tekhnologii: kollektivnyy poisk soglasovannykh resheniy v dialoge [Situation-driven decision making and multi-agent technology: finding solutions in dialogue] Ontologiya proyektirovaniya [Ontology of design]. Samara: New technology, 8(2), 26–47 (2013). (in Russian)Google Scholar
  5. 5.
    Gabdrashitova, E.I., Gamilova, D.A.: Otsenka proizvodstvennogo potentsiala nefteservisnykh predpriyatiy [Assessment of the productive capacity of oilfield service companies]. In: Internet-zhurnal « NAUKOVEDENIE » [Online journal “Science studies”], (3) (2014). https://naukovedenie.ru/PDF/30EVN314.pdf. (in Russian)
  6. 6.
    Burenina, I.V., Varakina, V.A.: Sistema yedinykh pokazateley otsenki effektivnosti deyatelnosti vertikalno-integrirovannykh neftyanykh kompaniy [The single indicator system of performance assessment of vertically integrated oil enterprises] Internet-zhurnal « NAUKOVEDENIE » [Online journal “Science studies”], 1 (2014). https://naukovedenie.ru/PDF/12EVN114.pdf. (in Russian)
  7. 7.
    Zobnin, S. S., Potekhin V.V.: P2P architectures in distributed automation systems. In: Proceedings of Symposium on Automated Systems and Technologies, pp. 37–43. PZH Verlag, Hannover (2014)Google Scholar
  8. 8.
    Web Workers (2012). http://www.w3.org/TR/workers/. Accessed 10 Jul 2014
  9. 9.
    WebRTC 1.0. Real-time Communication Between Browsers (2014). http://dev.w3.org/2011/webrtc/editor/webrtc.html. Accessed 10 Jul 2014
  10. 10.
    Fedorov, A.V., Zobnin, S.S., Potekhin, V.V.: Prescriptive analytics in distributed automation systems. In: Proceedings of Symposium on Automated Systems and Technologies, pp. 43–49. PZH Verlag, Hannover (2014)Google Scholar
  11. 11.
    Ross, S., Pineau, J., Paquet, S., Chaib-Draa, B.: Online planning algorithms for POMDPs. J. Artif. Intell. Res. (JAIR) 32, 663–704 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs. IJCAI 3, 1025–1032 (2003)Google Scholar
  13. 13.
    Spaan, M.T., Vlassis, N.A.: Perseus: randomized point-based value iteration for POMDPs. J. Artif. Intell. Res. (JAIR) 24, 195–220 (2005)CrossRefGoogle Scholar
  14. 14.
    Combin, N.N.: Tehnologii raspredelennogo reestra [Distributed register technologies] In: Nauchnoe soobschestvo studentov XXI stoletija. Tekhnicheskie nauki. Sbornik statei po LI studenchecskoi nauchno-practicheckoi konferencii. [Scientific community of XXI Century. Engineering science. In: Proceedings of the LI student scientific and practical conference], vol. 3, no. 50 (2017)Google Scholar
  15. 15.
    Ponomarev, K., Kudriashov, N., Popelnukha, N., Potekhin, V.: Main principals and issues of digital twin development for complex technological processes. In: Proceedings of the 28th DAAAM International Symposium. DAAAM International, Vienna (2017)Google Scholar
  16. 16.
    Katalinic, B., Kukushkin, I., Pryanichnikov, V., Haskovic, D.: Cloud communication concept for bionic assembly system. Procedia Eng. 69, 1562–1568 (2014)CrossRefGoogle Scholar
  17. 17.
    Gastermann, B., Stopper, M., Kossik, A., Katalinic, B.: Secure implementation of an on-premises cloud storage service for small and medium-sized enterprises. In: Proceedings of DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2014, Vienna, Austria, vol. 100, no. C, pp. 574–583 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Katalinić
    • 1
  • Dmitry Kostenko
    • 2
  • Vadim A. Onufriev
    • 2
    Email author
  • Vyacheslav V. Potekhin
    • 2
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations