Advertisement

The Model of a Cyber-Physical System for Hybrid Renewable Energy Station Control

  • Dmitry G. Arseniev
  • Vyacheslav P. Shkodyrev
  • Kamil I. YagafarovEmail author
Conference paper
  • 184 Downloads
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 95)

Abstract

Cyber-Physical Systems (CPSs) are a modern engineering system class based on the synergy of software and hardware components. In CPSs, embedded computers and networks monitor and control physical processes using feedback loops where physical processes have impact on calculations and vice versa. The present paper is devoted to the CPSs development for the control of the energy production process.

Keywords

Control system Cyber-physical system Intelligent automation Renewable energy production 

Notes

Acknowledgments

We thank the Siemens Company for its support. The research was covered by the donation agreement No. 1 CT-SPbPU-2016 as of 29.09.2016 to Peter the Great St. Petersburg Polytechnic University.

References

  1. 1.
    Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems – A Cyber-Physical Systems Approach, 2nd edn, 564 p. MIT Press, Cambridge (2017)Google Scholar
  2. 2.
    Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyber physical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    US National Science Foundation (2010). https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm
  4. 4.
    Shkodyrev, V.P.: Technical systems control: from mechatronics to cyber-physical systems, studies in systems, decision and control. In: Gorodetskiy, A.E. (ed.) Smart Electromechanical Systems, vol. 49, pp. 3–6. Springer, Cham (2016)Google Scholar
  5. 5.
    Xie, R., Liu, Z., Sun, M.: Representation learning of knowledge graphs with hierarchical types. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, USA, 9–15 July 2016, pp. 2965–2971 (2016)Google Scholar
  6. 6.
    McCune, R.R., Madey, G.R.: Swarm control of UAVs for cooperative hunting with DDDAS. Procedia Comput. Sci. 18, 2537–2544 (2013)CrossRefGoogle Scholar
  7. 7.
    Trinh, M.H., Zhao, S., Sun, Z., et al.: Bearing-based formation control of a group of agents with leader-first follower structure. IEEE Trans. Autom. Control 64(2), 598–613 (2018)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Silva, F., Correia, L., Christensen, A.L.: Evolutionary online behavior learning and adaptation in real robots. Roy. Soc. Open Sci. 4(7), 15 (2017)Google Scholar
  9. 9.
    Wang, Y., Liu, D., Sun, C.: A cyber physical model based on a hybrid system for flexible load control in an active distribution network. Energies 10(3), 267–286 (2017)CrossRefGoogle Scholar
  10. 10.
    Tomoiagă, B., Chindriş, M., Sumper, A., et al.: Pareto optimal reconfiguration of power distribution systems using a genetic algorithm based on NSGA-II. Energies 6, 1439–1455 (2013)CrossRefGoogle Scholar
  11. 11.
    Mornati, F.: Pareto optimality in the work of pareto. Eur. J. Soc. Sci. 51(2), 65–82 (2013)Google Scholar
  12. 12.
    Fortov, V.E., Popel, O.S.: Renewable energy sources in the world and Russia [Vozobnovlyayemyye istochniki energii v mire i v Rossii]. In: Popel, O.S. (ed.) Proceedings of the 1st International Forum “Vozobnovlyaemaya energetika. Puti povysheniya energeticheskoy i ekonomicheskoy effektivnosti” (REENFOR-2013), Moscow, Russia, 22–23 October 2013, pp. 12–22. OIVT RAN Publ., Moscow (2013). (in Russian)Google Scholar
  13. 13.
    Elistratov, V.V.: Renewable Energy [Vozobnovlyaemaya energetica]. Alternativnaya energetica i ecologiya 1, 142–143 (2017). (in Russian)Google Scholar
  14. 14.
    Richardson, M.: Principal Component Analysis, pp. 1–23 (2009)Google Scholar
  15. 15.
    Jolliffe, I.T., Cadima, J.: Principal component analysis: a review and recent developments. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 374(2065), 16 p. (2016)Google Scholar
  16. 16.
    Mythili, S., Madhiya, E.: An analysis of clustering algorithms in data mining. Int. J. Comput. Sci. Mob. Comput. 3(1), 334–340 (2014)Google Scholar
  17. 17.
    Battaglia, O.R., Paola, B.D., Fazio, C.: Cluster Analysis of Educational Data: an Example of Quantitative Study on the Answers to an Open-Ended Questionnaire, 30 p. (2015)Google Scholar
  18. 18.
    Jain, A., Gupta, A., Gupta, A., et al.: Trend-based on networking driven by big data telemetry for SDN and traditional networks. Int. J. Next-Gener. Netw. 11(1), 1–15 (2019)CrossRefGoogle Scholar
  19. 19.
    Selvaraj, P., Marudappa, P.: A survey of predictive analytics using big data with data mining. Int. J. Bioinform. Res. Appl. 14(3), 269–282 (2018)CrossRefGoogle Scholar
  20. 20.
    Pal, M., Roy, R., Basu, J., Bepari, M.S.: Blind source separation: a review and analysis. In: Proceedings of the International Conference Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken Language Research and Evaluation (O-COCOSDA/CASLRE), 25–27 November 2013 (2013)Google Scholar
  21. 21.
    Naik, G.R., Kumar, D.K.: An overview of independent component analysis and its applications. Informatica 35, 63–81 (2011)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dmitry G. Arseniev
    • 1
  • Vyacheslav P. Shkodyrev
    • 1
  • Kamil I. Yagafarov
    • 1
    Email author
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussia

Personalised recommendations