Advertisement

Seamless Data Integration in a CPPS with Highly Heterogeneous Facilities - Architectures and Use Cases Executed in a Learning Factory

  • Rudolf PichlerEmail author
  • Lukas Gerhold
  • Michael Pichler
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 95)

Abstract

Facing the principal challenges of a Cyberphysical System (CPS) in a manufacturing environment by establishing an appropriate universal and scalable architecture the paper shows two explicit use cases of successfully established communication lines (horizontal and vertical) that integrate facilities derived from highly different domains, this all done at the Learning Factory at Graz University of Technology. In present time effective Cyberphysical Production Systems (CPPSs) live on the pervasive and seamless data integration of its data generators and receivers mainly facilitated by the Linkage Part of a CPPS. The connectivity, its semantic interoperability and the scalability need well-designed concepts and architectures because of the existence of too many standards and protocols. The challenge increases significantly if the network should be set up with facilities from many different suppliers and their proprietary standards. At the Learning Factory of Graz University of Technology the integration of most heterogeneous products at the office floor and at the shop floor is a major part of its research. The paper presents two solutions in form of “Use Cases,” representing an innovative concept for both the vertical and the horizontal integration. Usage of an Enterprise Service Bus at the office floor and the installation of the “KEPServerEX”- middleware at the shop floor are selected core approaches for creating a representative CPPS.

Keywords

CPS in manufacturing Cyberphysical production systems Learning factory Heterogeneous IoT Data capturing Robot control OPC UA MindSphere KEPServerEX PdM WebConnector 

Notes

Acknowledgements

This research has been supported by the Know-How of the consortium members of the “IT-Summit” of the smartfactory@tugraz project, by the financial contributions of the Austrian Ministry for Transport, Innovation and Technology and 19 industrial consortium members of the project (see also www.smartfactory.tugraz.at). The research, the planning and the execution of the demonstrators in the Learning Factory has widely been done by the team of the Institute of Production Engineering at Graz University of Technology.

References

  1. 1.
    Ahmadi, A., Cherifi, C., Cheutet, V., et al.: A review of CPS 5 components architecture for manufacturing based on standards. In: SKIMA, International Conference on Software, Knowledge, Intelligent Management and Applications, Colombo, Sri Lanka. <Hal-01679977>, December 2017Google Scholar
  2. 2.
    Fallah, S.M., Trautner, T., Pauker, F.: Integrated tool lifecycle. In: 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering (2019). Procedia CIRP 79, 257–262CrossRefGoogle Scholar
  3. 3.
    Farahzadi, A., Shams, P., Rezazadeh, J., et al.: Middleware technologies for cloud of things: a survey. Digit. Commun. Netw. 4(3), 176–188 (2018)CrossRefGoogle Scholar
  4. 4.
    Garcia, M.V., Irisarri, E., Perez, F., et al.: An open CPPS automation architecture based on IEC-61499 over OPC-UA for flexible manufacturing in Oil&Gas industry. IFAC PapersOnLine 50–1, 1231–1238 (2017)CrossRefGoogle Scholar
  5. 5.
    Geisberger, E., Broy, M. (eds.): Integrierte forschungsagenda cyber-physical systems. In: Achatech Studies (2012)Google Scholar
  6. 6.
    Gorecky, D., Hennecke, A., Schmitt, M., et al.: Wandelbare modulare Automatisierungssysteme (2017)Google Scholar
  7. 7.
    Reinhart, G. (ed.): Handbuch Industrie 4.0. Carl Hanser Verlag, 567 p. (2017)Google Scholar
  8. 8.
    Hennig, M., Reisinger, G., Trautner, T., et al.: TU Wien pilot factory Industry 4.0. In: 9th Conference on Learning Factories, Braunschweig (2019)CrossRefGoogle Scholar
  9. 9.
    Hoppe, S.: Standardisierte horizontale und vertikale Kommunikation: Status und Ausblick. In: Bauernhansl, T., Hompel, M., Vogel-Heuser, B. (Hrsg.) Industrie 4.0 in Produktion, Automatisierung und Logistik, 325 p. (2014)CrossRefGoogle Scholar
  10. 10.
    Huber, W.: Industrie 4.0 in der Automobilproduktion, ein Praxisbuch, Standards, pp. 95–116 (2016)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Kolberg, D., Berger, C., Pirvu, B.-C., et al.: CyProF – insights from a framework for designing cyber-physical systems in production environments. In: 49th CIRP Conference on Manufacturing Systems (2016). Procedia CIRP 57, 32–37CrossRefGoogle Scholar
  13. 13.
    Lee, J., Bagheri, B., Jin, C.: Introduction to cyber manufacturing. Manuf. Lett. 8, 11–15 (2016)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Bagheri, B., Kao, H.: A cyber-physical system architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  15. 15.
    Moghaddam, M., Cadavid, M.N., Kenley, C.R., et al.: Reference architectures for smart manufacturing: a critical review. J. Manuf. Syst. 49, 215–225 (2018)CrossRefGoogle Scholar
  16. 16.
    Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)CrossRefGoogle Scholar
  17. 17.
    Monostori, L., Kadar, B., Bauernhansl, T., et al.: Cyber-physical systems in manufacturing. CIRP Ann. Manuf. Technol. 65, 621–641 (2016)CrossRefGoogle Scholar
  18. 18.
    Munz, H.; Stöger, G.: Deterministische Machine-to-Machine Kommunikation im Industrie 4.0 Umfeld. In: Schulz, T. (ed.) Industrie 4.0 (2017)Google Scholar
  19. 19.
    National Science Foundation. Cyber-Physical Systems (CPS) (2017). https://wwww.nsf.gov/pubs/2017/nsf17529.htm
  20. 20.
    N.N. How do you control a Stäubli robot with a SIMATIC controller? Industry Online Support International (2019). https://support.industry.siemens.com/cs/document//how-do-you-control-a-st%C3%A4ubli-robot-with-a-simatic-controller-?dti=0&lc=en-WW
  21. 21.
  22. 22.
    OPC Foundation: OPC Unified Architecture – Interoperabilität für Industrie 4.0 und das Internet der Dinge, white paper (2016)Google Scholar
  23. 23.
    Panetto, H., Iung, B., Ivanov, D., et al.: Challenges for the cyber-physical manufacturing enterprises of the future. Annu. Rev. Control (2019).  https://doi.org/10.1016/j.arcontrol.2019.02.002CrossRefGoogle Scholar
  24. 24.
    Perez, F., Irisarri, E., Orive, D., Marcos, M.: A CPPS Architecture approach for Industry 4.0 (2015)Google Scholar
  25. 25.
    Schleipen, M., Gilani, S.-S., Bischoff, T., et al.: OPC UA & Industrie 4.0 – enabling technology with high diversity and variability. In: 49th Conference on Manufacturing Systems (2016). Procedia CIRP 57, 315–320Google Scholar
  26. 26.
    Stojmenovic, I.: Machine-to-Machine communications with in-network data aggregation. Processing and actuation for large scale cyber-physical systems. IEEE Internet Things J. PP(99), 1 (2014)Google Scholar
  27. 27.
    Thiede, S., Juraschek, M., Herrmann, C.: Implementing cyber-physical production systems in learning factories. Procedia CIRP 54, 7–12 (2016).  https://doi.org/10.1016/j.procir.2016.04.098CrossRefGoogle Scholar
  28. 28.
    Törngren, M., Asplund, F., Bensalem, S., et al.: Characterisation, analysis and recommendations for exploiting the opportunities of cyberphysical systems. In: Song, H., et al. (eds.) Cyber-Physical Systems - Foundations, Principles and Applications (2017)Google Scholar
  29. 29.
    Trabesinger, S., Pichler, R., Schall, D., et al.: Connectivity as a prior challenge in establishing CPPS on basis of heterogeneous IT-software environments. In: 9th Conference on Learning Factories, Braunschweig (2018)Google Scholar
  30. 30.
    Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)CrossRefGoogle Scholar
  31. 31.
    Yli-Ojanperä, M., Sierla, S., Papakonstaninou, N., et al.: Adapting an agile manufacturing concept to the reference architecture model industry 4.0: a survey and case study. J. Ind. Inf. Integr. (2018).  https://doi.org/10.1016/j.jii.2018.12.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rudolf Pichler
    • 1
    Email author
  • Lukas Gerhold
    • 2
  • Michael Pichler
    • 1
  1. 1.Graz University of TechnologyGrazAustria
  2. 2.Siemens AGViennaAustria

Personalised recommendations