Combining Probabilistic Contexts in Multi-Agent Systems

  • Livia PredoiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11939)


We propose an approach for modelling, integrating, and querying distributed probabilistic contexts in multi-agent systems. We assume each agent to be equipped with an independently acquired uncertain context. By taking advantage of established database technologies, we represent the uncertain context of each agent as a set of probabilistic facts conveniently stored in a probabilistic database. Members of a multi-agent system act autonomously and interact with each other. The interaction between agents consists of sharing access to their contexts with each other and allowing queries over the combined shared contexts. This amounts to the challenge of combining and querying distributed probabilistic databases. To combine probabilistic contexts, we define a context-matching operator that creates a joint probability distribution with given marginal probabilities. Furthermore, we propose a query answering method over combinations of probabilistic contexts.


Joint Probability Distributions Copulas Contexts Data Integration Probabilistic Databases Query Answering 


  1. 1.
    Menger, K.: Random variables from the point of view of a general theory of variables. In: Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory, pp. 215–229 (1956)Google Scholar
  2. 2.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Morgan & Claypool, San Rafael (2011)CrossRefGoogle Scholar
  3. 3.
    Fréchet, M.: Sur les tableaux de corrélation dont les marges sont donnés. Annales de l’Université de Lyon 4, 53–57 (1951)zbMATHGoogle Scholar
  4. 4.
    Morgensten, D.: Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt fuer mathematische Statistik 8, 234–235 (1959)MathSciNetGoogle Scholar
  5. 5.
    Sklar, A.: Fonctions de répartition à n dimensions et leur marges. Publication Statistical Institute de l’Université de Paris 8, 229–231 (1959)zbMATHGoogle Scholar
  6. 6.
    Genest, C., Neslehova, J.: A primer on copulas for count data. ASTIN Bul. J. IAA 37(2), 475–515 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    van den Broeck, G., Suciu, D.: Query processing on probabilistic data: a survey. Found. Trends Databases 7(3–4), 197–341 (2017)CrossRefGoogle Scholar
  8. 8.
    Rode, S., Turner, R.M.: Representing and communicating context in multiagent systems. In: Christiansen, H., Stojanovic, I., Papadopoulos, G.A. (eds.) CONTEXT 2015. LNCS (LNAI), vol. 9405, pp. 257–270. Springer, Cham (2015). Scholar
  9. 9.
    Garant, D., da Silva, B.C., Lesser, V., Zhang, C.: Context-based concurrent experience sharing in multiagent systems. In: Proceedings of AAMAS 2017, pp. 1544–1546 (2017)Google Scholar
  10. 10.
    Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)CrossRefGoogle Scholar
  11. 11.
    Chen, F., Ren, W.: On the control of multi-agent systems: a survey. Found. Trends Syst. Control 6(4), 339–499 (2019)CrossRefGoogle Scholar
  12. 12.
    Furche, T., et al.: DIADEM: thousands of websites to a single database. PVLDB 7(14), 1845–1856 (2014)Google Scholar
  13. 13.
    Govindaraju, V., Zhang, C., Ré, C.: Understanding tables in context using standard NLP toolkits. In: Proceedings of ACL 2013, pp. 658–664 (2013)Google Scholar
  14. 14.
    Zhang, C., Shin, J., Ré, C., Cafarella, M., Nui, F.: Extracting databases from dark data with DeepDive. In: Proceedings of SIGMOD 2016, pp. 847–859 (2016)Google Scholar
  15. 15.
    Zhang, C., Ré, C., Cafarella, M.J., Shin, J., Wang, F., Wu, S.: DeepDive: declarative knowledge base construction. Commun. ACM 60(5), 93–102 (2017)CrossRefGoogle Scholar
  16. 16.
    Nelson, R.B.: An Introduction to Copulas. Springer Series in Statistics, 2nd edn. Springer, New York (2006). Scholar
  17. 17.
    Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer, Heidelberg (2011). Scholar
  18. 18.
    Das Sarma, A., Dong, X.L., Halevy, A.Y.: Uncertainty in data integration and dataspace support platforms. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping. Springer, Heidelberg (2011). Scholar
  19. 19.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. J. ACM 58(4), 1–55 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lukasiewicz, T., Martinez, M.V., Predoiu, L., Simari, G.I.: Existential rules and Bayesian networks for probabilistic ontological data exchange. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 294–310. Springer, Cham (2015). Scholar
  22. 22.
    Lukasiewicz, T., Martinez, M.V., Predoiu, L., Simari, G.I.: Basic probabilistic ontological data exchange with existential rules. In: Proceedings of AAAI 2016, pp. 1023–1029 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations