Advertisement

Assessing Sentiment of the Expressed Stance on Social Media

  • Abeer AldayelEmail author
  • Walid Magdy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11864)

Abstract

Stance detection is the task of inferring viewpoint towards a given topic or entity either being supportive or opposing. One may express a viewpoint towards a topic by using positive or negative language. This paper examines how the stance is being expressed in social media according to the sentiment polarity. There has been a noticeable misconception of the similarity between the stance and sentiment when it comes to viewpoint discovery, where negative sentiment is assumed to mean against stance, and positive sentiment means in-favour stance. To analyze the relation between stance and sentiment, we construct a new dataset with four topics and examine how people express their viewpoint with regards these topics. We validate our results by carrying a further analysis of the popular stance benchmark SemEval stance dataset. Our analyses reveal that sentiment and stance are not highly aligned, and hence the simple sentiment polarity cannot be used solely to denote a stance toward a given topic.

Keywords

Stance detection Sentiment analysis Public opinion Event analysis Social media 

Supplementary material

References

  1. 1.
    Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity measures. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol. 5182, pp. 305–316. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85836-2_29CrossRefGoogle Scholar
  2. 2.
    Agarwal, A., Singh, R., Toshniwal, D.: Geospatial sentiment analysis using twitter data for UK-EU referendum. J. Inf. Optim. Sci. 39(1), 303–317 (2018)Google Scholar
  3. 3.
    An, J., Kwak, H., Posegga, O., Jungherr, A.: Political discussions in homogeneous and cross-cutting communication spaces (2019)Google Scholar
  4. 4.
    Biber, D., Finegan, E.: Adverbial stance types in English. Discourse Process. 11(1), 1–34 (1988)CrossRefGoogle Scholar
  5. 5.
    Darwish, K., Magdy, W., Zanouda, T.: Improved stance prediction in a user similarity feature space. In: ASONAM 2017 (2017)Google Scholar
  6. 6.
    Ebrahimi, J., Dou, D., Lowd, D.: A joint sentiment-target-stance model for stance classification in tweets. In: COLING, pp. 2656–2665 (2016)Google Scholar
  7. 7.
    Elfardy, H., Diab, M.: CU-GWU perspective at SemEval-2016 task 6: ideological stance detection in informal text. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 434–439 (2016)Google Scholar
  8. 8.
    Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)Google Scholar
  9. 9.
    Hu, Y., Wang, F., Kambhampati, S.: Listening to the crowd: automated analysis of events via aggregated twitter sentiment. In: Twenty-Third International Joint Conference on Artificial Intelligence (2013)Google Scholar
  10. 10.
    Igarashi, Y., Komatsu, H., Kobayashi, S., Okazaki, N., Inui, K.: Tohoku at SemEval-2016 Task 6: feature-based model versus convolutional neural network for stance detection. In: SemEval@ NAACL-HLT, pp. 401–407 (2016)Google Scholar
  11. 11.
    Kareem, D., Peter, S., Aupetit, M.J., Preslav, N.: Unsupervised user stance detection on Twitter. arXiv preprint arXiv:1904.02000 (2019)
  12. 12.
    Krejzl, P., Steinberger, J.: UWB at SemEval-2016 Task 6: stance detection. In: SemEval@ NAACL-HLT, pp. 408–412 (2016)Google Scholar
  13. 13.
    Lee, H.W.: Using Twitter Hashtags to gauge real-time changes in public opinion: an examination of the 2016 US presidential election. In: Staab, S., Koltsova, O., Ignatov, D.I. (eds.) SocInfo 2018. LNCS, vol. 11186, pp. 168–175. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01159-8_16CrossRefGoogle Scholar
  14. 14.
    Liu, B., et al.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2(2010), 627–666 (2010)Google Scholar
  15. 15.
    Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X.D., Cherry, C.: SemEval-2016 task 6: detecting stance in tweets. In: SemEval@ NAACL-HLT, pp. 31–41 (2016)Google Scholar
  16. 16.
    Mohammad, S.M., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets. ACM Trans. Internet Technol. (TOIT) 17(3), 26 (2017)CrossRefGoogle Scholar
  17. 17.
    Overbey, L.A., Batson, S.C., Lyle, J., Williams, C., Regal, R., Williams, L.: Linking Twitter sentiment and event data to monitor public opinion of geopolitical developments and trends. In: Lee, D., Lin, Y.-R., Osgood, N., Thomson, R. (eds.) SBP-BRiMS 2017. LNCS, vol. 10354, pp. 223–229. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60240-0_26CrossRefGoogle Scholar
  18. 18.
    Park, S., Ko, M., Kim, J., Liu, Y., Song, J.: The politics of comments: predicting political orientation of news stories with commenters’ sentiment patterns. In: Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, pp. 113–122. ACM (2011)Google Scholar
  19. 19.
    Smith, K.S., McCreadie, R., Macdonald, C., Ounis, I.: Analyzing disproportionate reaction via comparative multilingual targeted sentiment in Twitter. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 317–320. ACM (2017)Google Scholar
  20. 20.
    Sobhani, P., Mohammad, S., Kiritchenko, S.: Detecting stance in tweets and analyzing its interaction with sentiment. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 159–169 (2016)Google Scholar
  21. 21.
    Somasundaran, S., Wiebe, J.: Recognizing stances in ideological on-line debates. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pp. 116–124. Association for Computational Linguistics (2010)Google Scholar
  22. 22.
    Trabelsi, A., Zaiane, O.R.: Unsupervised model for topic viewpoint discovery in online debates leveraging author interactions. In: Twelfth International AAAI Conference on Web and Social Media (2018)Google Scholar
  23. 23.
    Tsolmon, B., Kwon, A.-R., Lee, K.-S.: Extracting social events based on timeline and sentiment analysis in Twitter corpus. In: Bouma, G., Ittoo, A., Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 265–270. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31178-9_32CrossRefGoogle Scholar
  24. 24.
    Unankard, S., Li, X., Sharaf, M., Zhong, J., Li, X.: Predicting Elections from social networks based on sub-event detection and sentiment analysis. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8787, pp. 1–16. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11746-1_1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of InformaticsThe University of EdinburghEdinburghUK

Personalised recommendations