Quantifying Polarization on Twitter: The Kavanaugh Nomination

  • Kareem DarwishEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11864)


This paper addresses polarization quantification, particularly as it pertains to the nomination of Brett Kavanaugh to the US Supreme Court and his subsequent confirmation with the narrowest margin since 1881. Republican (GOP) and Democratic (DNC) senators voted overwhelmingly along party lines. In this paper, we examine political polarization concerning the nomination among Twitter users. To do so, we accurately identify the stance of more than 128 thousand Twitter users towards Kavanaugh’s nomination using both semi-supervised and supervised classification. Next, we quantify the polarization between the different groups in terms of who they retweet and which hashtags they use. We modify existing polarization quantification measures to make them more efficient and more effective. We also characterize the polarization between users who supported and opposed the nomination.


Political polarization Polarization quantification Stance detection 


  1. 1.
    Borge-Holthoefer, J., Magdy, W., Darwish, K., Weber, I.: Content and network dynamics behind Egyptian political polarization on twitter. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 700–711. ACM (2015)Google Scholar
  2. 2.
    Conover, M., Ratkiewicz, J., Francisco, M.R., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on twitter. In: ICWSM, vol. 133, pp. 89–96 (2011)Google Scholar
  3. 3.
    Darwish, K., Magdy, W., Rahimi, A., Baldwin, T., Abokhodair, N.: Predicting online islamophopic behavior after# parisattacks. J. Web Sci. 3(1), 34–52 (2017)Google Scholar
  4. 4.
    Darwish, K., Magdy, W., Zanouda, T.: Trump vs. Hillary: what went viral during the 2016 US presidential election. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) SocInfo 2017. LNCS, vol. 10539, pp. 143–161. Springer, Cham (2017). Scholar
  5. 5.
    Darwish, K., Stefanov, P., Aupetit, M.J., Nakov, P.: Unsupervised user stance detection on twitter. arXiv preprint arXiv:1904.02000 (2019)
  6. 6.
    Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying controversy on social media. ACM Trans. Soc. Comput. 1(1), 3 (2018)CrossRefGoogle Scholar
  7. 7.
    Guerra, P.C., Meira Jr., W., Cardie, C., Kleinberg, R.: A measure of polarization on social media networks based on community boundaries. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)Google Scholar
  8. 8.
    Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759 (2016)
  9. 9.
    Kutlu, M., Darwish, K., Elsayed, T.: Devam vs. Tamam: 2018 Turkish elections. arXiv preprint arXiv:1807.06655 (2018)
  10. 10.
    Magdy, W., Darwish, K., Abokhodair, N., Rahimi, A., Baldwin, T.: # isisisnotislam or# deportallmuslims?: Predicting unspoken views. In: Proceedings of the 8th ACM Conference on Web Science, pp. 95–106. ACM (2016)Google Scholar
  11. 11.
    Magdy, W., Darwish, K., Weber, I.: # failedrevolutions: Using twitter to study the antecedents of ISIS support. First Monday 21(2) (2016)Google Scholar
  12. 12.
    Mohtarami, M., Baly, R., Glass, J., Nakov, P., Màrquez, L., Moschitti, A.: Automatic stance detection using end-to-end memory networks. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long Papers), pp. 767–776 (2018)Google Scholar
  13. 13.
    Morales, A., Borondo, J., Losada, J.C., Benito, R.M.: Measuring political polarization: twitter shows the two sides of Venezuela. Chaos Interdisc. J. Nonlinear Sci. 25(3), 033114 (2015)CrossRefGoogle Scholar
  14. 14.
    Weber, I., Garimella, V.R.K., Batayneh, A.: Secular vs. Islamist polarization in Egypt on twitter. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 290–297. ACM (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Qatar Computing Research Institute, HBKUDohaQatar

Personalised recommendations