Perceptions of Social Roles Across Cultures

  • MeiXing DongEmail author
  • David Jurgens
  • Carmen Banea
  • Rada Mihalcea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11864)


In this paper we introduce a data set of social roles and their aspects (descriptors or actions) as emerging from surveys conducted across a sample of over 400 respondents from two different cultures: US and India. The responses show that there are indeed differences of role perceptions across the cultures, with actions showcasing less variability, and descriptors exhibiting stronger differences. In addition, we notice strong shifts in sentiment and emotions across the cultures. We further present a pilot study in predicting social roles based on attributes by leveraging dependency-based corpus statistics and embedding models. Our evaluations show that models trained on the same culture as the test set are better predictors of social role ranking.


Social role perceptions Cultural differences Word associations Cultural biases Natural language processing Word representations 



This material is based in part upon work supported by the Michigan Institute for Data Science, by the National Science Foundation (grant #1815291), and by the John Templeton Foundation (grant #61156). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the Michigan Institute for Data Science, the National Science Foundation, or the John Templeton Foundation.


  1. 1.
    Andrews, M., Vigliocco, G., Vinson, D.: Integrating experiential and distributional data to learn semantic representations. Psychol. Rev. 116(3), 463 (2009)CrossRefGoogle Scholar
  2. 2.
    Ashforth, B.E., Kreiner, G.E., Fugate, M.: All in a day’s work: boundaries and micro role transitions. Acad. Manag. Rev. 25(3), 472–491 (2000)CrossRefGoogle Scholar
  3. 3.
    Bamman, D., Dyer, C., Smith, N.A.: Distributed representations of geographically situated language. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 828–834 (2014).
  4. 4.
    Bamman, D., O’Connor, B., Smith, N.A.: Learning latent personas of film characters, pp. 352–361.
  5. 5.
    Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)zbMATHGoogle Scholar
  6. 6.
    Berinsky, A.J., Huber, G.A., Lenz, G.S.: Evaluating online labor markets for experimental research:’s mechanical turk. Political Anal. 20(3), 351–368 (2012)CrossRefGoogle Scholar
  7. 7.
    Biddle, B.J.: Recent developments in role theory. Ann. Rev. Sociol. 12(1), 67–92 (1986)CrossRefGoogle Scholar
  8. 8.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  9. 9.
    Brown, P.F., Desouza, P.V., Mercer, R.L., Pietra, V.J.D., Lai, J.C.: Class-based n-gram models of natural language. Computat. Linguist. 18(4), 467–479 (1992)Google Scholar
  10. 10.
    Bruni, E., Boleda, G., Baroni, M., Tran, N.K.: Distributional semantics in technicolor. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pp. 136–145. Association for Computational Linguistics (2012)Google Scholar
  11. 11.
    Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical significance, and word association. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1058–1068. Association for Computational Linguistics (2011)Google Scholar
  12. 12.
    Cialdini, R.B., Kallgren, C.A., Reno, R.R.: A focus theory of normative conduct: a theoretical refinement and reevaluation of the role of norms in human behavior (1991)Google Scholar
  13. 13.
    Clifford, S., Jewell, R.M., Waggoner, P.D.: Are samples drawn from mechanical turk valid for research on political ideology? Res. Polit. 2(4), 2053168015622072 (2015)Google Scholar
  14. 14.
    Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)Google Scholar
  15. 15.
    Daga, S.S., Raval, V.V., Raj, S.P.: Maternal meta-emotion and child socioemotional functioning in immigrant Indian and white American families. Asian Am. J. Psychol. 6(3), 233 (2015)CrossRefGoogle Scholar
  16. 16.
    De Deyne, S., Navarro, D.J., Storms, G.: Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations. Behav. Res. Methods 45(2), 480–498 (2013)CrossRefGoogle Scholar
  17. 17.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  18. 18.
    Eagly, A.H., Karau, S.J.: Role congruity theory of prejudice toward female leaders. Psychol. Rev. 109(3), 573 (2002)CrossRefGoogle Scholar
  19. 19.
    Esuli, A., Sebastiani, F.: SentiWordNet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation (LREC 2006), Genova, IT (2006)Google Scholar
  20. 20.
    Feng, Y., Lapata, M.: Visual information in semantic representation. In: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 91–99. Association for Computational Linguistics (2010)Google Scholar
  21. 21.
    Garimella, A., Banea, C., Mihalcea, R.: Demographic-aware word associations. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing (EMNLP 2017), Copenhagen, Denmark (2017)Google Scholar
  22. 22.
    Garimella, A., Mihalcea, R., Pennebaker, J.: Identifying cross-cultural differences in word usage. In: Proceedings of the International Conference on Computational Linguistics (COLING 2016), Japan (2016)Google Scholar
  23. 23.
    Gupta, A., Boleda, G., Baroni, M., Padó, S.: Distributional vectors encode referential attributes. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 12–21. Association for Computational Linguistics, Lisbon, September 2015.
  24. 24.
    Hovy, D., Purschke, C.: Capturing regional variation with distributed place representations and geographic retrofitting. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 4383–4394 (2018)Google Scholar
  25. 25.
    Jurgens, D., Tsvetkov, Y., Jurafsky, D.: Writer profiling without the writer’s text. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) SocInfo 2017. LNCS, vol. 10540, pp. 537–558. Springer, Cham (2017). Scholar
  26. 26.
    Katz, D., Kahn, R.L.: The Social Psychology of Organizations, vol. 2. Wiley, New York (1978)Google Scholar
  27. 27.
    Kent, G.H., Rosanoff, A.J.: A study of association in insanity. Am. J. Psychiatry 67(1), 37–96 (1910)CrossRefGoogle Scholar
  28. 28.
    Levy, O., Goldberg, Y.: Dependency-based word embeddings, pp. 302–308 (2014).
  29. 29.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014).
  30. 30.
    Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in continuous space word representations. In: NAACL HLT, Atlanta, GA, USA, pp. 746–751 (2013)Google Scholar
  31. 31.
    Miller, G.A.: WordNet: a lexical database for English. Commun. Assoc. Comput. Mach. 38(11), 39–41 (1995)Google Scholar
  32. 32.
    Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The university of South Florida free association, rhyme, and word fragment norms. Behav. Res. Methods Instrum. Comput. 36(3), 402–407 (2004)CrossRefGoogle Scholar
  34. 34.
    Paul, M., Girju, R.: Cross-cultural analysis of blogs and forums with mixed-collection topic models. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, Singapore, pp. 1408–1417, August 2009.
  35. 35.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  36. 36.
    Plutchik, R.: The Emotions. Random House, New York (1962)Google Scholar
  37. 37.
    Raval, V.V., Raval, P.H., Salvina, J.M., Wilson, S.L., Writer, S.: Mothers’ socialization of children’s emotion in india and the usa: a cross-and within-culture comparison. Soc. Dev. 22(3), 467–484 (2013)CrossRefGoogle Scholar
  38. 38.
    Ritzer, G., et al.: The McDonaldization of Society. Pine Forge Press, Newbury Park (1992)Google Scholar
  39. 39.
    Rogers, A., Hosur Ananthakrishna, S., Rumshisky, A.: What’s in your embedding, and how it predicts task performance. In: Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, pp. 2690–2703, August 2018Google Scholar
  40. 40.
    Roseman, I.J., Dhawan, N., Rettek, S.I., Naidu, R., Thapa, K.: Cultural differences and cross-cultural similarities in appraisals and emotional responses. J. Cross Cult. Psychol. 26(1), 23–38 (1995)CrossRefGoogle Scholar
  41. 41.
    Salton, G., Lesk, M.: Computer evaluation of indexing and text processing. J. ACM 15(1), 8–36 (1968). Scholar
  42. 42.
    Shweder, R.A.: Thinking Through Cultures: Expeditions in Cultural Psychology. Harvard University Press, Cambridge (1991)Google Scholar
  43. 43.
    Sunstein, C.R.: Social norms and social roles. Columbia Law Rev. 96(4), 903–968 (1996)CrossRefGoogle Scholar
  44. 44.
    Triandis, H.C., Marin, G., Hui, C.H., Lisansky, J., Ottati, V.: Role perceptions of hispanic young adults. J. Cross Cult. Psychol. 15(3), 297–320 (1984)CrossRefGoogle Scholar
  45. 45.
    Turian, J., Ratinov, L., Bengio, Y.: Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 384–394. Association for Computational Linguistics (2010)Google Scholar
  46. 46.
    Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers, vol. 2, pp. 90–94 (2012).
  47. 47.
    Wilson, T., et al.: OpinionFinder: a system for subjectivity analysis. In: Proceedings of HLT/EMNLP 2005 Interactive Demonstrations (2005)Google Scholar
  48. 48.
    Zafar, L., Afzal, M.T., Ahmed, U.: Exploiting polarity features for developing sentiment analysis tool. In: EMSASW@ ESWC (2017)Google Scholar
  49. 49.
    Zou, W.Y., Socher, R., Cer, D., Manning, C.D.: Bilingual word embeddings for phrase-based machine translation. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1393–1398 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • MeiXing Dong
    • 1
    Email author
  • David Jurgens
    • 1
  • Carmen Banea
    • 1
  • Rada Mihalcea
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations