Measuring Personal Values in Cross-Cultural User-Generated Content

  • Yiting ShenEmail author
  • Steven R. Wilson
  • Rada Mihalcea
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11864)


There are several standard methods used to measure personal values, including the Schwartz Values Survey and the World Values Survey. While these tools are based on well-established questionnaires, they are expensive to administer at a large scale and rely on respondents to self-report their values rather than observing what people actually choose to write about. We employ a lexicon-based method that can computationally measure personal values on a large scale. Our approach is not limited to word-counting as we explore and evaluate several alternative approaches to quantifying the usage of value-related themes in a given document. We apply our methodology to a large blog dataset comprised of text written by users from different countries around the world in order to quantify cultural differences in the expression of person values on blogs. Additionally, we analyze the relationship between the value themes expressed in blog posts and the values measured for some of the same countries using the World Values Survey.


Content analysis Personal values User-generated content 



This material is based in part upon work supported by the Michigan Institute for Data Science, by the National Science Foundation (grant #1815291), and by the John Templeton Foundation (grant #61156). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the Michigan Institute for Data Science, the National Science Foundation, or the John Templeton Foundation.


  1. 1.
    Ball-Rokeach, S., Rokeach, M., Grube, J.W.: The Great American Values Test: Influencing Behavior and Belief Through Television. Free Press, New York (1984)Google Scholar
  2. 2.
    Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)
  3. 3.
    Boyd, R.L., Wilson, S.R., Pennebaker, J.W., Kosinski, M., Stillwell, D.J., Mihalcea, R.: Values in words: using language to evaluate and understand personal values. In: Ninth International AAAI Conference on Web and Social Media (2015)Google Scholar
  4. 4.
    Chung, C.K., Pennebaker, J.W.: Finding values in words: using natural language to detect regional variations in personal concerns. In: Geographical psychology: Exploring the interaction of environment and behavior, pp. 195–216 (2014).
  5. 5.
    Faulkner, S.L., Baldwin, J.R., Lindsley, S.L., Hecht, M.L.: Layers of meaning: an analysis of definitions of culture. In: Redefining Culture: Perspectives Across the Disciplines, pp. 27–51 (2006)Google Scholar
  6. 6.
    Garten, J., Hoover, J., Johnson, K.M., Boghrati, R., Iskiwitch, C., Dehghani, M.: Dictionaries and distributions: Combining expert knowledge and large scale textual data content analysis. Behav. Res. Methods 50(1), 344–361 (2018)CrossRefGoogle Scholar
  7. 7.
    Graham, J., Haidt, J., Nosek, B.A.: Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96(5), 1029 (2009)CrossRefGoogle Scholar
  8. 8.
    Hofstede, G.: Dimensionalizing cultures: the hofstede model in context. Online Readings Psychol. Cult. 2(1), 8 (2011)CrossRefGoogle Scholar
  9. 9.
    Inglehart, R., et al.: World values survey: round six-country-pooled datafile 2010–2014. JD Systems Institute, Madrid (2014)Google Scholar
  10. 10.
    Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Knafo, A., Roccas, S., Sagiv, L.: The value of values in cross-cultural research: a special issue in honor of shalom schwartz (2011)CrossRefGoogle Scholar
  12. 12.
    Landes, S., Leacock, C., Tengi, R.I.: Building semantic concordances. WordNet Electron. Lexical Database 199(216), 199–216 (1998)Google Scholar
  13. 13.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)zbMATHGoogle Scholar
  14. 14.
    Miller, G.: WordNet: An Electronic Lexical Database. MIT press, Cambridge (1998)zbMATHGoogle Scholar
  15. 15.
    Pennebaker, J.W., Boyd, R.L., Jordan, K., Blackburn, K.: The development and psychometric properties of liwc2015. Technical report (2015)Google Scholar
  16. 16.
    Peters, M.E., et al.: Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)
  17. 17.
    Ramirez-Esparza, N., Chung, C.K., Kacewicz, E., Pennebaker, J.W.: The psychology of word use in depression forums in English and in Spanish: testing two text analytic approaches. In: In the International AAAI Conference on Web and Social Media (2008)Google Scholar
  18. 18.
    Rohan, M.J.: A rose by any name? the values construct. Pers. Soc. Psychol. Rev. 4(3), 255–277 (2000). Scholar
  19. 19.
    Rokeach, M.: Beliefs, Attitudes, and Values, vol. 34. Jossey-Bass, San Francisco (1968)Google Scholar
  20. 20.
    Rokeach, M.: The Nature of Human Values, vol. 438. Free press, New York (1973)Google Scholar
  21. 21.
    Schwartz, S.H.: Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. Adv. Exp. Soc. Psychol. 25, 1–65 (1992). Scholar
  22. 22.
    Schwartz, S.H.: An overview of the Schwartz theory of basic values. Online Readings Psychol. Cult. 2(1), 11 (2012)CrossRefGoogle Scholar
  23. 23.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  24. 24.
    Wilson, S.R., Shen, Y., Mihalcea, R.: Building and validating hierarchical lexicons with a case study on personal values. In: Staab, S., Koltsova, O., Ignatov, D.I. (eds.) SocInfo 2018. LNCS, vol. 11185, pp. 455–470. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations