Computing Bisimilarity Metrics for Probabilistic Timed Automata

  • Ruggero Lanotte
  • Simone TiniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11918)


We are interested in describing timed systems that exhibit probabilistic behaviour and in evaluating their behavioural discrepancies. To this purpose, we consider probabilistic timed automata, we introduce a concept of n-bisimilarity metric and give an algorithm to decide it.


  1. 1.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Softw. Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  2. 2.
    de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.): REX 1991. LNCS, vol. 600. Springer, Heidelberg (1992). Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Asarin, E., Basset, N., Degorre, A.: Distance on timed words and applications. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 199–214. Springer, Cham (2018). Scholar
  5. 5.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of bisimilarity distances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 1–15. Springer, Heidelberg (2013). Scholar
  6. 6.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly computation of bisimilarity distances. Logical Methods Comput. Sci. 13(2) (2017) Google Scholar
  7. 7.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Converging from branching to linear metrics on Markov Chains. Math. Struct. Comp. Sci. 29(1), 3–37 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel: F.: Computing probabilistic bisimilarity distances for probabilistic automata. In: CONCUR. LIPiCS, vol. 140, pp. 9:1–9:17 (2019)Google Scholar
  9. 9.
    Beauquier, D.: On probabilistic timed automata. Theor. Comput. Sci. 292, 65–84 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bertrand, N., et al.: Stochastic timed automata. Log. Meth. Comp. Sci. 10 (2014)Google Scholar
  11. 11.
    Bouyer, P.: Forward analysis of updatable timed automata. Formal Meth. Syst, Des. 24, 281–320 (2004)CrossRefGoogle Scholar
  12. 12.
    Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theoret. Comput. Sci. 321(2–3), 291–345 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    van Breugel, F.: On behavioural pseudometrics and closure ordinals. Inf. Process. Lett. 112(19), 715–718 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theoret. Comput. Sci. 331(1), 115–142 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    van Breugel, F., Sharma, B., Worrell, J.: Approximating a behavioural pseudometric without discount. Log. Methods Comput. Sci. 4(2) (2008)Google Scholar
  16. 16.
    van Breugel, F., Worrell, J.: Approximating and computing behavioural distances in probabilistic transition systems. Theor. Comput. Sci. 360(1), 373–385 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    van Breugel, F., Worrell, J.: The complexity of computing a bisimilarity pseudometric on probabilistic automata. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 191–213. Springer, Cham (2014). Scholar
  18. 18.
    Castiglioni, V., Gebler, D., Tini, S.: Logical characterization of bisimulation metrics. In: QAPL 2016. EPTCS, vol. 227, pp. 44–62 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Castiglioni, V., Tini, S.: Logical characterization of branching metrics for nondeterministic probabilistic transition systems. Inf. Comput. 268 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993). Scholar
  21. 21.
    Chatterjee, K., Ibsen-Jensen, R., Majumdar, R.: Edit distance for timed automata. In: HSCC14, pp. 303–312. ACM (2014)Google Scholar
  22. 22.
    Chatterjee, K., Prabhu, V.S.: Quantitative temporal simulation and refinement distances for timed systems. IEEE Trans. Automat. Contr. 60(9), 2291–2306 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic bisimilarity. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 437–451. Springer, Heidelberg (2012). Scholar
  24. 24.
    Chen, T., Han, T., Katoen, J.: Time-abstracting bisimulation for probabilistic timed automata. In: TASE08, pp. 177–184. IEEE (2008)Google Scholar
  25. 25.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. STTT 17(4), 397–415 (2015)CrossRefGoogle Scholar
  26. 26.
    Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. QAPL. ENTCS 153(2), 79–96 (2006)Google Scholar
  27. 27.
    Deng, Y., Du, W.: The kantorovich metric in computer science: a brief survey. QAPL. ENTCS 253(3), 73–82 (2009)Google Scholar
  28. 28.
    Desharnais, J., Gupta, J., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoret. Comput. Sci. 318(3), 323–354 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990). Scholar
  30. 30.
    Ferns, N., Panangaden, P., Precup, D.: Metrics for finite markov decision processes. In: UAI, pp. 162–169. AUAI Press (2004)Google Scholar
  31. 31.
    Giacalone, A., Jou, C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: IFIP TC2 PROCOMET (1990)Google Scholar
  32. 32.
    Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comp. 111(2), 193–244 (1994)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005). Scholar
  34. 34.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoret. Comput. Sci. 282, 101–150 (2002)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language with recursion. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 419–430. Springer, Heidelberg (1996). Scholar
  36. 36.
    Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Weak bisimulation for probabilistic timed automata. Theor. Comput. Sci. 411(50), 4291–4322 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polygonal traces. In: HSCC15, pp. 199–208. ACM (2015)Google Scholar
  39. 39.
    Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43, 164–190 (2013)CrossRefGoogle Scholar
  40. 40.
    Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, MIT (1995)Google Scholar
  41. 41.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). Scholar
  42. 42.
    Sproston, J., Troina, A.: Simulation and bisimulation for probabilistic timed automata. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 213–227. Springer, Heidelberg (2010). Scholar
  43. 43.
    Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric systems. Ph.D. thesis, University of Nijmegen, The Netherlands (2002)Google Scholar
  44. 44.
    Tang, Q., van Breugel, F.: Computing probabilistic bisimilarity distances via policy iteration. In: CONCUR, pp. 22:1–22:15. LIPIcs (2016)Google Scholar
  45. 45.
    Tang, Q., van Breugel, F.: Algorithms to compute probabilistic bisimilarity distances for Labelled Markov Chains. In: CONCUR, pp. 27:1–27:16. LIPiCS (2017)Google Scholar
  46. 46.
    TaŞiran, S., Alur, R., Kurshan, R.P., Brayton, R.K.: Verifying abstractions of timed systems. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 546–562. Springer, Heidelberg (1996). Scholar
  47. 47.
    Yamane, S.: Probabilistic timed simulation verification and its application to stepwise refinement of real-time systems. In: Saraswat, V.A. (ed.) ASIAN 2003. LNCS, vol. 2896, pp. 276–290. Springer, Heidelberg (2003). Scholar
  48. 48.
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Pittsburgh, PA, USA (2004)Google Scholar
  49. 49.
    Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W. (eds.) EEF School 1996. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DiSUITUniversity of InsubriaComoItaly

Personalised recommendations