Advertisement

Embedding SMT-LIB into B for Interactive Proof and Constraint Solving

  • Sebastian KringsEmail author
  • Michael Leuschel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11918)

Abstract

The SMT-LIB language and the B language are both based on predicate logic and have some common operators. However, B supports data types not available in SMT-LIB and vice versa. In this article we suggest a straightforward translation from SMT-LIB to B. Using this translation, SMT-LIB can be analyzed by tools developed for the B method. We show how Atelier B can be used for automatic and interactive proof of SMT-LIB problems. Furthermore, we incorporated our translation into the model checker ProB and applied it to several benchmarks taken from the SMT-LIB repository. In contrast to most SMT solvers, ProB relies on finite domain constraint propagation, with support for infinite domains by keeping track of the exhaustiveness of domain variable enumerations. Our goal was to see whether this kind of approach is beneficial for SMT solving.

References

  1. 1.
    Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, New York (1996)CrossRefGoogle Scholar
  2. 2.
    Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  3. 3.
    Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer, Heidelberg (2006).  https://doi.org/10.1007/11901433_32CrossRefGoogle Scholar
  4. 4.
    Abrial, J.-R., Mussat, L.: On using conditional definitions in formal theories. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 242–269. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45648-1_13CrossRefzbMATHGoogle Scholar
  5. 5.
    Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  6. 6.
    Barrett, C., de Moura, L., Stump, A.: SMT-COMP: satisfiability modulo theories competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005).  https://doi.org/10.1007/11513988_4CrossRefGoogle Scholar
  7. 7.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.5. Tech. rep., Department of Computer Science, The University of Iowa (2015). www.SMT-LIB.org
  8. 8.
    Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22438-6_11CrossRefGoogle Scholar
  9. 9.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14052-5_11CrossRefGoogle Scholar
  10. 10.
    Boute, R.T.: The Euclidean definition of the functions div and mod. ACM Trans. Program. Lang. Syst. 14(2), 127–144 (1992)CrossRefGoogle Scholar
  11. 11.
    Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_12CrossRefGoogle Scholar
  12. 12.
    Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00768-2_16CrossRefzbMATHGoogle Scholar
  13. 13.
    Cantone, D., Zarba, C.G.: A new fast tableau-based decision procedure for an unquantified fragment of set theory. In: Caferra, R., Salzer, G. (eds.) FTP 1998. LNCS (LNAI), vol. 1761, pp. 126–136. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-46508-1_8CrossRefGoogle Scholar
  14. 14.
    Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0033845CrossRefGoogle Scholar
  15. 15.
    Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02959-2_12CrossRefGoogle Scholar
  16. 16.
    ClearSy: Atelier B 4.1 Release Notes. Aix-en-Provence, France (2009). http://www.atelierb.eu/
  17. 17.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MathSciNetCrossRefGoogle Scholar
  18. 18.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  19. 19.
    Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30885-7_14CrossRefGoogle Scholar
  20. 20.
    Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a proof platform for the automated verification of B proof obligations. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43652-3_26CrossRefGoogle Scholar
  21. 21.
    Duck, G.J.: SMCHR: satisfiability modulo constraint handling rules. CoRR, abs/1210.5307 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_49CrossRefGoogle Scholar
  23. 23.
    Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin. Sci. Comput. Program. 94(2), 130–143 (2014)CrossRefGoogle Scholar
  24. 24.
    Fröhlich, A., Kovásznai, G., Biere, A.: Efficiently solving bit-vector problems using model checkers. In: Proceedings SMT Workshop, pp. 6–15 (2013)Google Scholar
  25. 25.
    Frühwirth, T.: Theory and practice of constraint handling rules. J. Logic Program. 37(1–3), 95–138 (1998)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27813-9_14CrossRefGoogle Scholar
  27. 27.
    Hansen, D., Leuschel, M.: Translating TLA\(^+\) to B for validation with ProB. In: Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 24–38. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30729-4_3CrossRefGoogle Scholar
  28. 28.
    Middeldorp, A., Sato, T. (eds.): FLOPS 1999. LNCS, vol. 1722. Springer, Heidelberg (1999).  https://doi.org/10.1007/10705424CrossRefGoogle Scholar
  29. 29.
    Howe, J.M., King, A.: A pearl on SAT and SMT solving in prolog. Theor. Comput. Sci. 435, 43–55 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Knuth, D.E.: The art of computer programming, volume 1: Fundamental Algorithms, vol. 1. Addison Wesley Longman Publishing Co., Inc., Redwood City (1997)zbMATHGoogle Scholar
  31. 31.
    Kotelnikov, E., Kovács, L., Reger, G., Voronkov, A.: The vampire and the FOOL. In: Proceedings CPP, CPP 2016, pp. 37–48. ACM (2016)Google Scholar
  32. 32.
    Kotelnikov, E., Kovács, L., Voronkov, A.: A first class boolean sort in first-order theorem proving and TPTP. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 71–86. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20615-8_5CrossRefGoogle Scholar
  33. 33.
    Krings, S., Leuschel, M.: SMT solvers for validation of B and event-B models. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-33693-0_23CrossRefGoogle Scholar
  34. 34.
    Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation to data validation: the prob constraint solver 10 years on. In: Boulanger, J.-L. (ed.) Formal Methods Applied to Complex Systems: Implementation of the B Method, pp. 427–446. Wiley ISTE (2014)Google Scholar
  35. 35.
    Marques-Silva, J., Sakallah, K.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Matos, P.J., Fischer, B., Marques-Silva, J.: A lazy unbounded model checker for Event-B. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 485–503. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10373-5_25CrossRefGoogle Scholar
  37. 37.
    Reger, G., Suda, M., Voronkov, A.: Instantiation and pretending to be an SMT solver with vampire. In: Proceedings SMT Workshop (2012)Google Scholar
  38. 38.
    Schneider, D., Leuschel, M., Witt, T.: Model-based problem solving for university timetable validation and improvement. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 487–495. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19249-9_30CrossRefGoogle Scholar
  39. 39.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_28CrossRefGoogle Scholar
  40. 40.
    Weissenbacher, G., Kröning, D., Rümmer, P.: A proposal for a theory of finite sets, lists, and maps for the SMT-Lib standard. In: Proceedings SMT Workshop (2009)Google Scholar
  41. 41.
    Witulski, J., Leuschel, M.: Checking computations of formal method tools - a secondary toolchain for ProB. In: Proceedings F-IDE, vol. 149, EPTCS. Electronic Proceedings in Theoretical Computer Science (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Informatik, Universität DüsseldorfDüsseldorfGermany

Personalised recommendations