In-network Hebbian Plasticity for Wireless Sensor Networks

  • Tim van der LeeEmail author
  • Georgios Exarchakos
  • Sonia Heemstra de Groot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)


In typical Wireless Sensor Networks (WSNs), all sensor data is routed to a more powerful computing entity. In the case of environmental monitoring, this enables data prediction and event detection. When the size of the network increases, processing all the input data outside the network will create a bottleneck at the gateway device. This creates delays and increases the energy consumption of the network. To solve this issue, we propose using Hebbian learning to pre-process the data in the wireless network. This method allows to reduce the dimension of the sensor data, without loosing spatial and temporal correlation. Furthermore, bottlenecks are avoided. By using a recurrent neural network to predict sensor data, we show that pre-processing the data in the network with Hebbian units reduces the computation time and increases the energy efficiency of the network without compromising learning.


Recurrent neural network Wireless Sensor Networks Hebbian plasticity 


  1. 1.
    Ahad, N., Qadir, J., Ahsan, N.: Neural networks in wireless networks: techniques, applications and guidelines. J. Netw. Comput. Appl. 68, 1–27 (2016)CrossRefGoogle Scholar
  2. 2.
    Alves, R.C.A., Margi, C.B.: IEEE 802.15.4e TSCH mode performance analysis. In: 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 361–362, October 2016Google Scholar
  3. 3.
    Bengio, Y., Simard, P., Frasconi, P., et al.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)CrossRefGoogle Scholar
  4. 4.
    Camero, A., Toutouh, J., Alba, E.: Low-cost recurrent neural network expected performance evaluation. arXiv preprint arXiv:1805.07159 (2018)
  5. 5.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  6. 6.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)CrossRefGoogle Scholar
  7. 7.
    Isomura, T., Toyoizumi, T.: On the achievability of blind source separation for high-dimensional nonlinear source mixtures. arXiv preprint arXiv:1808.00668 (2018)
  8. 8.
    Ketkar, N.: Introduction to PyTorch. In: Deep Learning with Python, pp. 195–208. Springer, Heidelberg (2017) CrossRefGoogle Scholar
  9. 9.
    Kwon, H., Birdsall, T.: Channel capacity in bits per joule. IEEE J. Ocean. Eng. 11(1), 97–99 (1986)CrossRefGoogle Scholar
  10. 10.
    Lee, J.S., Su, Y.W., Shen, C.C., et al.: A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. Ind. Electron. Soc. 5, 46–51 (2007)Google Scholar
  11. 11.
    Luo, C., Wu, F., Sun, J., Chen, C.W.: Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Trans. Wirel. Commun. 9(12), 3728–3738 (2010)CrossRefGoogle Scholar
  12. 12.
    Moridi, M.A., Kawamura, Y., Sharifzadeh, M., Chanda, E.K., Jang, H.: An investigation of underground monitoring and communication system based on radio waves attenuation using ZigBee. Tunn. Undergr. Space Technol. 43, 362–369 (2014)CrossRefGoogle Scholar
  13. 13.
    Oja, E.: Simplified neuron model as a principal component analyzer. J. Math. Biol. 15(3), 267–273 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oja, E., Karhunen, J.: An analysis of convergence for a learning version of the subspace method. J. Math. Anal. Appl. 91(1), 102–111 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Oliveira, L.M., Rodrigues, J.J.: Wireless sensor networks: a survey on environmental monitoring. JCM 6(2), 143–151 (2011)CrossRefGoogle Scholar
  16. 16.
    Pu, F., Xu, Z., Chen, H., Xu, X., Chen, N.: A DLM-LSTM framework for North-South land deformation trend analysis from low-cost GPS sensor time series. J. Sens. 2018, 11 (2018)CrossRefGoogle Scholar
  17. 17.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, Technical report. California University San Diego La Jolla Inst for Cognitive Science (1985)Google Scholar
  18. 18.
    Savaglio, C., Pace, P., Aloi, G., Liotta, A., Fortino, G.: Lightweight reinforcement learning for energy efficient communications in wireless sensor networks. IEEE Access 7, 29355–29364 (2019)CrossRefGoogle Scholar
  19. 19.
    Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)CrossRefGoogle Scholar
  20. 20.
    Shu, T., Chen, J., Bhargava, V., de Silva, C.W.: An energy-efficient dual prediction scheme using LMS filter and LSTM in wireless sensor networks for environment monitoring. IEEE Internet Things J. 6, 6736–6747 (2019)CrossRefGoogle Scholar
  21. 21.
    Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 214–226. ACM (2004)Google Scholar
  22. 22.
    Wang, Y., Zhou, J., Chen, K., Wang, Y., Liu, L.: Water quality prediction method based on LSTM neural network. In: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–5. IEEE (2017)Google Scholar
  23. 23.
    Werbos, P.J., et al.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10), 1550–1560 (1990)CrossRefGoogle Scholar
  24. 24.
    Winter, T., et al.: RPL: IPv6 routing protocol for low-power and lossy networks. RFC 6550, RFC Editor, March 2012Google Scholar
  25. 25.
    Zhang, W., et al.: LSTM-based analysis of industrial IoT equipment. IEEE Access 6, 23551–23560 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tim van der Lee
    • 1
    Email author
  • Georgios Exarchakos
    • 1
  • Sonia Heemstra de Groot
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations