Advertisement

Engineering Micro-intelligence at the Edge of CPCS: Design Guidelines

  • Roberta CalegariEmail author
  • Giovanni Ciatto
  • Enrico Denti
  • Andrea Omicini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)

Abstract

The Intelligent Edge computing paradigm is playing a major role in the design and development of Cyber-Physical and Cloud Systems (CPCS), extending the Cloud and overcoming its limitations so as to better address the issues related with the physical dimension of data—and therefore of the data-aware intelligence (such as context-awareness and real-time responses). Despite the proliferation of research works in this area, a well-founded software engineering approach specifically addressing the distribution of intelligence sources between the Edge and the Cloud is still missing. In this paper we propose some general criteria along with a coherent set of guidelines to follow in the design of distributed intelligence within CPCS, suitably exploiting Edge and Cloud paradigms to effectively enable data intelligence and accounting for both symbolic and sub-symbolic approaches to reasoning. Then, we exploit the notion of micro-intelligence as situated intelligence for Edge computing, promoting the idea of intelligent environment embodying rational processes meant to complement the cognitive process of individuals in order to reduce their cognitive workload and augment their cognitive capabilities. In order to demonstrate the general applicability of our guidelines, we propose Situated Logic Programming (SLP) as the conceptual framework for delivering micro-intelligence in CPCS, and Logic Programming as a Service (LPaaS) as its reference architecture and technological embodiment.

Keywords

Design guidelines CPCS Micro-intelligence LPaaS Situated Logic Programming Edge intelligence 

References

  1. 1.
    Ananthanarayanan, G., et al.: Real-time video analytics: the killer app for edge computing. IEEE Comput. 50(10), 58–67 (2017). http://ieeexplore.ieee.org/document/8057318CrossRefGoogle Scholar
  2. 2.
    Calegari, R.: Micro-intelligence for the IoT: logic-based models and technologies. Ph.D. thesis, Alma Mater Studiorum-Università di Bologna, Bologna, Italy (2018). http://amsdottorato.unibo.it/8521
  3. 3.
    Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: Logic programming in space-time: the case of situatedness in LPaaS. In: Cossentino, M., Sabatucci, L., Seidita, V. (eds.) 19th Workshop “From Objects to Agents” (WOA 2018), CEUR Workshop Proceedings, vol. 2215, pp. 63–68. Sun SITE Central Europe, RWTH Aachen University, June 2018. http://ceur-ws.org/Vol-2215/paper%5F11.pdf
  4. 4.
    Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: LPaaS as micro-intelligence: enhancing IoT with symbolic reasoning. Big Data Cogn. Comput. 2(3) (2018). http://www.mdpi.com/2504-2289/2/3/23CrossRefGoogle Scholar
  5. 5.
    Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service. Theor. Pract. Logic Program. 18(3–4), 1–28 (2018).  https://doi.org/10.1017/S1471068418000364MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service in multi-agent systems for the Internet of Things. Int. J. Grid Util. Comput. 10(4), 344–360 (2019).  https://doi.org/10.1504/IJGUC.2019.10022135CrossRefGoogle Scholar
  7. 7.
    Chen, M., Li, W., Fortino, G., Hao, Y., Hu, L., Humar, I.: A dynamic service migration mechanism in edge cognitive computing. ACM Trans. Internet Technol. 19(2) (2019). http://dl.acm.org/citation.cfm?id=3239565CrossRefGoogle Scholar
  8. 8.
    Cicirelli, F., Guerrieri, A., Mercuri, A., Spezzano, G., Vinci, A.: ITEMa: a methodological approach for cognitive edge computing IoT ecosystems. Future Gener. Comput. Syst. 92, 189–197 (2019). http://www.sciencedirect.com/science/article/pii/S0167739X17330224CrossRefGoogle Scholar
  9. 9.
    Clark, A., Chalmers, D.J.: The extended mind. Analysis 58(1), 7–19 (1998). http://www.jstor.org/stable/3328150CrossRefGoogle Scholar
  10. 10.
    Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall/Pearson Education International, Upper Saddle River (2005). http://dl.acm.org/citation.cfm?id=1088876
  11. 11.
    Esteva, M., de la Cruz, D.D.L., Rosell, B., Arcos, J.L.A., Rodríguez-Aguilar, J.A., Cuní, G.: Engineering open multi-agent systems as electronic institutions. In: 19th National Conference on Artifical Intelligence (AAAI 2004), pp. 1010–1011. AAAI Press (2004). http://dl.acm.org/citation.cfm?id=1597303
  12. 12.
    Hollan, J., Hutchins, E., Kirsh, D.: Distributed cognition: toward a new foundation for human-computer interaction research. ACM Trans. Comput.-Hum. Interact. 7(2), 174–196 (2000). http://dl.acm.org/citation.cfm?id=353487CrossRefGoogle Scholar
  13. 13.
    Hu, L., Miao, Y., Wu, G., Hassan, M.M., Humar, I.: iRobot-factory: an intelligent robot factory based on cognitive manufacturing and edge computing. Future Gener. Comput. Syst. 90, 569–577 (2019). http://www.sciencedirect.com/science/article/pii/S0167739X1831183XCrossRefGoogle Scholar
  14. 14.
    Logic Programming as a Service (LPaaS) (2018). http://lpaas.apice.unibo.it/
  15. 15.
    Mariani, S., Omicini, A.: TuCSoN on cloud: an event-driven architecture for embodied/disembodied coordination. In: Aversa, R., Kołodziej, J., Zhang, J., Amato, F., Fortino, G. (eds.) ICA3PP 2013. LNCS, vol. 8286, pp. 285–294. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-03889-6_33CrossRefGoogle Scholar
  16. 16.
    Omicini, A., Calegari, R.: Injecting (micro)intelligence in the IoT: logic-based approaches for (M)MAS. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds.) MMAS 2018. LNCS (LNAI), vol. 11422, pp. 21–35. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-20937-7_2CrossRefGoogle Scholar
  17. 17.
    Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., Liotta, A.: An edge-based architecture to support efficient applications for healthcare Industry 4.0. IEEE Trans. Ind. Informatics 15(1), 481–489 (2019). http://ieeexplore.ieee.org/document/8370750/CrossRefGoogle Scholar
  18. 18.
    Rauch, E., Linder, C., Dallasega, P.: Anthropocentric perspective of production before and within industry 4.0. Comput. Ind. Eng. (In press). http://www.sciencedirect.com/science/article/pii/S0360835219300233
  19. 19.
    Rosenberg, D., Boehm, B., Wang, B., Qi, K.: Rapid, evolutionary, reliable, scalable system and software development: the resilient agile process. In: 2017 International Conference on Software and System Process (ICSSP 2017), pp. 60–69. ACM (2017). http://dl.acm.org/citation.cfm?id=3084107
  20. 20.
    Tang, B., Chen, Z., Hefferman, G., Pei, S., Wei, T., He, H., Yang, Q.: Incorporating intelligence in fog computing for big data analysis in smart cities. IEEE Trans. Ind. Inf. 13(5), 2140–2150 (2017). http://ieeexplore.ieee.org/document/7874167/CrossRefGoogle Scholar
  21. 21.
    Um, J.-S.: Futurology and future prospect of drone CPS. Drones as Cyber-Physical Systems, pp. 257–274. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-3741-3_8CrossRefGoogle Scholar
  22. 22.
    Waschull, S., Bokhorst, J., Molleman, E., Wortmann, J.: Work design in future industrial production: transforming towards cyber-physical systems. Comput. Ind. Eng. (In press). http://www.sciencedirect.com/science/article/pii/S0360835219300683

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Informatica – Scienza e Ingegneria (DISI)Alma Mater Studiorum–Università di BolognaBolognaItaly
  2. 2.Dipartimento di Informatica – Scienza e Ingegneria (DISI)Alma Mater Studiorum–Università di BolognaCesenaItaly

Personalised recommendations