Hybrid Software-Defined Network Monitoring

  • Abdulfatah A. G. Abushagur
  • Tan Saw ChinEmail author
  • Rizaludin Kaspin
  • Nazaruddin Omar
  • Ahmad Tajuddin Samsudin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)


Software defined networking (SDN) with OpenFlow-enabled switches operate alongside traditional switches has become a matter of fact in ISP network paradigms which are known as a hybrid SDN (H-SDN) network. When the centralized controller of SDN introduced into an existing network, significant improvement in network use as well as reducing packet losses and delays are expected. However, monitoring such networks is the main concern for better traffic management decision making which can lead to a maximum throughput performance. There is, to our knowledge, only one actual article proposed for H-SDN monitoring scheme so far. Thus, this paper surveys several monitoring methods/techniques for both networks, then propose taxonomy criteria to evaluate the various monitoring methods. The survey includes discussing the design concepts, accuracy and limitations for each, eventually summarize the future research directions for integrated perspective of monitoring in H-SDN networks.


Hybrid SDN Network tomography Hybrid SDN monitoring 


  1. 1.
    Isolani, P.H., Wickboldt, J.A., Both, C.B., Rochol, J., Granville, L.Z.: Interactive monitoring, visualization, and configuration of OpenFlow-based SDN. In: Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management, IM 2015, pp. 207–215 (2015)Google Scholar
  2. 2.
    Rawat, D.B., Reddy, S.R.: Software defined networking architecture, security and energy efficiency: a survey. IEEE Commun. Surv. Tutorials. 19, 325–346 (2017)CrossRefGoogle Scholar
  3. 3.
    Lin, C., Wang, K., Deng, G.: A QoS-aware routing in SDN hybrid networks. In: Procedia Computer Science (2017)Google Scholar
  4. 4.
    Michel, O., Keller, E.: SDN in wide-area networks: a survey. In: 2017 4th International Conference on Software Defined Systems, SDS 2017, pp. 37–42 (2017)Google Scholar
  5. 5.
    Salsano, S., et al.: Hybrid IP/SDN networking: open implementation and experiment management tools. IEEE Trans. Netw. Serv. Manag. 13, 138–153 (2016)CrossRefGoogle Scholar
  6. 6.
    Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., Hu, S.: A survey of deployment solutions and optimization strategies for hybrid SDN networks. IEEE Commun. Surv. Tutorials 21(2), 1483–1507 (2019)CrossRefGoogle Scholar
  7. 7.
    Cheng, T.Y., Jia, X.: Compressive traffic monitoring in hybrid SDN. IEEE J. Sel. Areas Commun. 36, 2731–2743 (2018)CrossRefGoogle Scholar
  8. 8.
    Cox, J.H., et al.: Advancing software-defined networks: a survey. IEEE Access 5, 25487–25526 (2017)CrossRefGoogle Scholar
  9. 9.
    Rojas, E., et al.: Are we ready to drive software-defined networks? A comprehensive survey on management tools and techniques. ACM Comput. Surv. 51, 24 (2018)CrossRefGoogle Scholar
  10. 10.
    Tsai, P.W., Tsai, C.W., Hsu, C.W., Yang, C.S.: Network monitoring in software-defined networking: a review. IEEE Syst. J. 12, 3958–3969 (2018)CrossRefGoogle Scholar
  11. 11.
    Sandhya, Y.S., Haribabu, K.: A survey: hybrid SDN. J. Netw. Comput. Appl. 100, 35–55 (2017)CrossRefGoogle Scholar
  12. 12.
    Amin, R., Reisslein, M., Shah, N.: Hybrid SDN networks: a survey of existing approaches. IEEE Commun. Surv. Tutorials 20(4), 3259–3306 (2018)CrossRefGoogle Scholar
  13. 13.
    Zhou, D., Yan, Z., Fu, Y., Yao, Z.: A survey on network data collection. J. Netw. Comput. Appl. 116, 9–23 (2018)CrossRefGoogle Scholar
  14. 14.
    Pepe, T., Puleri, M.: Network tomography: a novel algorithm for probing path selection. In: IEEE International Conference on Communications, pp. 5337–5341 (2015)Google Scholar
  15. 15.
    Dusia, A., Sethi, A.S.: Recent advances in fault localization in computer networks. IEEE Commun. Surv. Tutorials 18(4), 3030–3051 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Bindel, D., Katz, R.H.: Tomography-based overlay network monitoring. In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement (IMC 2003), pp. 216–231. ACM, New York (2004)Google Scholar
  17. 17.
    Chua, D.B., Kolaczyk, E.D., Crovella, M.: Efficient monitoring of end-to-end network properties. In: Proceedings - IEEE INFOCOM (2005)Google Scholar
  18. 18.
    Song, L.Q., Zhang, Y.: NetQuest: a flexible framework for large-scale network measurement. IEEE/ACM Trans. Netw. 17, 106–119 (2009)CrossRefGoogle Scholar
  19. 19.
    Coates, M., Pointurier, Y., Rabbat, M.: Compressed network monitoring for IP and all-optical networks (2007)Google Scholar
  20. 20.
    Fan, X., Li, X.: Network tomography via sparse Bayesian learning. IEEE Commun. Lett. 21(4), 781–784 (2017)CrossRefGoogle Scholar
  21. 21.
    Fan, X., Li, X., Zhang, J.: Compressed sensing based loss tomography using weighted ℓ1 minimization. Comput. Commun. 127, 122–130 (2018)CrossRefGoogle Scholar
  22. 22.
    Li, H., Gao, Y., Dong, W., Chen, C.: Taming both predictable and unpredictable link failures for network tomography. IEEE/ACM Trans. Netw. 26(3), 1460–1473 (2018)CrossRefGoogle Scholar
  23. 23.
    Pan, S., Zhou, Y., Zhang, Z., Yang, S., Qian, F., Hu, G.: Identify congested links with network tomography under multipath routing. J. Netw. Syst. Manag. 27(2), 409–429 (2019)CrossRefGoogle Scholar
  24. 24.
    Cui, L., Yu, F.R., Yan, Q.: When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Netw. 30(1), 58–65 (2016)CrossRefGoogle Scholar
  25. 25.
    Yu, Y., Qian, C., Li, X.: Distributed and collaborative traffic monitoring in software defined networks. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, pp. 85–90 (2014)Google Scholar
  26. 26.
    Su, Z., Wang, T., Xia, Y., Hamdi, M.: CeMon: a cost-effective flow monitoring system in software defined networks. Comput. Netw. 92, 101–115 (2015)CrossRefGoogle Scholar
  27. 27.
    Hartung, M., Körner, M.: SOFTmon - traffic monitoring for SDN. Proc. Comput. Sci. 110, 516–523 (2017)CrossRefGoogle Scholar
  28. 28.
    Suárez-Varela, J., Barlet-Ros, P.: Flow monitoring in software-defined networks: finding the accuracy/performance tradeoffs. Comput. Netw. 135, 289–301 (2018)CrossRefGoogle Scholar
  29. 29.
    Queiroz, W., Capretz, M.A.M., Dantas, M.: An approach for SDN traffic monitoring based on big data techniques. J. Netw. Comput. Appl. 131, 28–39 (2019)CrossRefGoogle Scholar
  30. 30.
    Chua, D.B., Kolaczyk, E.D., Crovella, M.: A statistical framework for efficient monitoring of end-to-end network properties. In: Proceedings of ACM SIGMETRICS (Poster Paper), no. Poster Paper, pp. 1–20 (2004).
  31. 31.
    Chen, Y., Bindel, D., Song, H.H., Katz, R.H.: Algebra-based scalable overlay network monitoring: algorithms, evaluation, and applications. IEEE/ACM Trans. Netw. 15, 1084–1097 (2007)CrossRefGoogle Scholar
  32. 32.
    Song, H.H., Yalagandula, P.: Real-time end-to-end network monitoring in large distributed systems. In: 2007 2nd International Conference on Communication Systems Software and Middleware, pp. 1–10 (2007)Google Scholar
  33. 33.
    Luong, D.-H., Outtagarts, A., Hebbar, A.: Traffic monitoring in software defined networks using opendaylight controller. In: Boumerdassi, S., Renault, É., Bouzefrane, S. (eds.) MSPN 2016. LNCS, vol. 10026, pp. 38–48. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdulfatah A. G. Abushagur
    • 1
  • Tan Saw Chin
    • 1
    Email author
  • Rizaludin Kaspin
    • 2
  • Nazaruddin Omar
    • 2
  • Ahmad Tajuddin Samsudin
    • 2
  1. 1.Faculty of Informatics and ComputingMultimedia UniversityCyberjayaMalaysia
  2. 2.Telekom Malaysia Research & DevelopmentCyberjayaMalaysia

Personalised recommendations