Advertisement

An Overview of Wireless Indoor Positioning Systems: Techniques, Security, and Countermeasures

  • Mouna S. ChebliEmail author
  • Heba Mohammad
  • Khalifa Al Amer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11874)

Abstract

The interest in Indoor position systems (IPSs) had been widely increased recently, due to technological advancement. IPSs provide users with location information of various objects inside big buildings, typically using a mobile device. Different wireless technologies are available to provide location service such RF, Wi-Fi, Bluetooth, Visible Light Communication (VLC), etc. IPSs mainly determine the position by analyzing sensory information which is collected by mobile device continuously on real time, unless the user turned off the service. Various services and security issues had been associated with IPSs. Secure positioning become more important and crucial to the success of the delivered service. Location service network that based on off-air signal measurement is susceptible to numerous attacks (e.g. wormhole, sinkhole and Sybil attacks). This paper aims to provide an integrated view of IPSs, technologies and associated security threats that face such positioning systems. The paper compares different wireless indoor position technologies, explore potential attacks, and evaluate IPS protection mechanism.

Keywords

Indoor positioning Secure localization WSN security 

References

  1. 1.
    Li, T., Chen, Y., Zhang, R., Zhang, Y., Hedgpeth, T.: Secure crowdsourced indoor positioning systems. In: IEEE Conference on Computer Communications, Honolulu (2018)Google Scholar
  2. 2.
    Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems techniques and systems. IEEE Trans. Syst. Man Cybern. 37(6), 1067–1080 (2007)CrossRefGoogle Scholar
  3. 3.
    Mier, J., Jaramillo-Alcázar, A., Freire, J.J.: At a glance: indoor positioning systems technologies and their applications areas. In: Rocha, Á., Ferrás, C., Paredes, M. (eds.) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol. 918, pp. 483–493. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11890-7_47CrossRefGoogle Scholar
  4. 4.
    Van Haute, T., et al.: Performance analysis of multiple Indoor Positioning Systems in a healthcare environment. Int. J. Health Geogr. 15(1), 1–15 (2016)CrossRefGoogle Scholar
  5. 5.
    Mišić, J., Milovanović, B., Vasić, N., Milovanović, I.: An overview of wireless indoor positioning systems. Infoteh-Jahorina 14, 301–306 (2015)Google Scholar
  6. 6.
    Yassin, A., et al.: Recent advances in indoor localization: a survey on theoretical approaches and applications. IEEE Commun. Surv. Tutorials 19, 1327–1346 (2017)CrossRefGoogle Scholar
  7. 7.
    Zafari, F., Kin, L.K.: A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutorials 21, 2568–2599 (2018)CrossRefGoogle Scholar
  8. 8.
    Kim, S., Ha, S., Saad, A., Kim, J.: Indoor positioning system techniques and security. In: IEEE-Forth International Conference on e-Technologies and Networks for Development (ICeND), pp. 1–4 (2015). 10.1109(7328540)Google Scholar
  9. 9.
    Cisco, Wi-Fi Location-Based Services 4.1 Design Guide, Cisco Systems, Inc., San Jose (2008)Google Scholar
  10. 10.
    Disha, A.M.: A comparative analysis on indoor positioning techniques and systems. Int. J. Eng. Res. Appl. (IJERA) 3(2), 1790–1796 (2013)Google Scholar
  11. 11.
    Malik, A., Zulfiqar, T., Javed, M.A., Nafi, N.S., Lodhi, H.: Performance evaluation of Wi-Fi finger printing based indoor positioning system. In: 2018 IEEE Conference on Wireless Sensors (ICWiSe), Langkawi (2018)Google Scholar
  12. 12.
    Zhuang, Y., et al.: A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutorials 20(3), 1963–1988 (2018)CrossRefGoogle Scholar
  13. 13.
    Bouet, M., Dos Santos, A.L.: RFID tags: positioning principles and localization techniques. In: 1st IFIP Wireless Days, Dubai, pp. 1–5 (2008)Google Scholar
  14. 14.
    Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutorials 11(1), 13–32 (2009)CrossRefGoogle Scholar
  15. 15.
    García, E., Poudereux, P., Hernández, Á., García, J.J., Ureña, J.: DS-UWB indoor positioning system implementation based on FPGAs. Sens. Actuators A. Phys. 201, 172–181 (2013)CrossRefGoogle Scholar
  16. 16.
    Alarifi, A., et al.: Ultra-wideband indoor positioning technologies: analysis and recent advances. Sensors 16, 707 (2016)CrossRefGoogle Scholar
  17. 17.
    Mousa, F.I.K., Almaadeed, N., Busawon, K., Bouridane, A., Binns, R., Elliot, I.: Indoor visible light communication localization system utilizing received signal strength indication technique and trilateration method. Opt. Eng. Digit. Lib. 57, 016107 (2018)Google Scholar
  18. 18.
    Brena, R.F.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017, 21 (2017)CrossRefGoogle Scholar
  19. 19.
    Rajagopal, N., Lazik, P., Rowe, A.: Visual light landmarks for mobile devices. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 249–260. IEEE Press, April 2014Google Scholar
  20. 20.
    Do, T.-H., Yoo, M.: An in-depth survey of visible light communication based positioning systems. Sensors 16(5), 678 (2016)CrossRefGoogle Scholar
  21. 21.
    Hernandez, O., Jain, V., Chakravarty, S., Bhargava, P.: Position Location Monitoring Using IEEE 802.15.4 ZigBee technology. http://www.nxp.com/assets/documents/data/en/brochures/PositionLocationMonitoring.pdf. Accessed 5 Dec 2016
  22. 22.
    Kaushal, K., Kaur, T., Kaur, J.: ZigBee based wireless sensor networks. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(6), 7752–7755 (2014)Google Scholar
  23. 23.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52, 2292–2330 (2008)CrossRefGoogle Scholar
  24. 24.
    Yang, J., Chen, Y., Trappe, W., Chen, J.: Detection and localization of multiple spoofing attackers in wireless networks. IEEE Trans. Parallel Distrib. Syst. 24(1), 44–58 (2013)CrossRefGoogle Scholar
  25. 25.
    Kibirige, G.W., Sanga, C.: A survey on detection of sinkhole attack in wireless sensor network. arXiv preprint arXiv:1505.01941 (2015)
  26. 26.
    Yuan, Y., Huo, L., Wang, Z., Hogrefe, D.: Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access 6(2018), 27629–27636 (2018)CrossRefGoogle Scholar
  27. 27.
    Jiang, J., Han, G., Zhu, C., Dong, Y., Zhang, N.: Secure localization in wireless sensor networks: a survey. J. Commun. 6(6), 460–470 (2011)CrossRefGoogle Scholar
  28. 28.
    Singh, V.P., Anand Ukey, A.S., Jain, S.: Signal strength based hello flood attack detection and prevention in wireless sensor networks. Int. J. Comput. Appl. 62(15), 1–6 (2013)Google Scholar
  29. 29.
    Ning, P., Liu, A.: Mitigating DoS attacks against broadcast authentication in wireless sensor networks. ACM Trans. Sens. Netw. 4(1), 1–3 (2008)CrossRefGoogle Scholar
  30. 30.
    Boukerche, A., Nakamura, E.F., Loureiro, A.A.F.: Secure localization algorithms for wireless sensor networks. IEEE Commun. Mag. 0163–6804, 96–101 (2008)CrossRefGoogle Scholar
  31. 31.
    Liu, D., Ning, P.: Detecting malicious beacon nodes for secure location discovery in wireless sensor network. In: 25th IEEE International Conference on Distributed Computing Systems, pp. 1063–6927 (2005)Google Scholar
  32. 32.
    Srinivasan, A., Teitelbaum, J., Wu, J.: DRBTS: distributed reputation-based beacon trust system. In: 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, Indianapolis, pp. 277–283 (2006)Google Scholar
  33. 33.
    Liu, D., Ning, P., Du, W.K.: Attack-resistant location estimation in sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 11(4), 22 (2008)CrossRefGoogle Scholar
  34. 34.
    Mukhopadhyay, B., Srirangarajan, S., Kar, S.: Robust range-based secure localization in wireless sensor networks. In: IEEE Global Communications Conference (GLOBECOM), Abu Dhabi (2018)Google Scholar
  35. 35.
    Hamid, A., Rashid, M., Hong, C.S.: Defense against lap-top class attacker in wireless sensor network. In: 8th International Conference Advanced Communication Technology, pp. 318–323, February 2006Google Scholar
  36. 36.
    Singh, V.P., Jain, S., Singhai, J.: Hello flood attack and its countermeasures in wireless sensor network. IJCSI Int. J. Comput. Sci. Issues 7(3), 23–26 (2010)Google Scholar
  37. 37.
    Lazos, L., Poovendran, R.: SeRLoc: secure range-independent localization for wireless sensor networks. In: 4th ACM Workshop on Wireless Security, Philadelphia, pp. 21–33, October 2004Google Scholar
  38. 38.
    Srinivasan, A., Wu, J.: A survey on secure localization in wireless sensor networks. In: Wireless and Mobile Communications. CRC Press/Taylor and Francis Group, London (2007)Google Scholar
  39. 39.
    Mohd, W.G., Sharma, S., Saklani, A., Singhal, A.: HiRLoc: high-resolution robust localization for wireless sensor networks. J. Comput. Eng. (IOSR-JCE) 16(2), 112–115 (2014)CrossRefGoogle Scholar
  40. 40.
    Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application to sensor networks. In: Proceedings of IEEE Computer and Communications Societies, vol. 3, pp. 1917–1928 (2005)Google Scholar
  41. 41.
    Lazos, L., Poovendran, R., Capkun, S.: Robust position estimation in wireless sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, pp. 324–331 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mouna S. Chebli
    • 1
    Email author
  • Heba Mohammad
    • 1
  • Khalifa Al Amer
    • 1
  1. 1.Higher Colleges of TechnologyAbu DhabiUAE

Personalised recommendations