Advertisement

Local Field Potentials and ECoG

  • Doris D. Wang
  • Witney Chen
  • Philip A. Starr
  • Coralie de HemptinneEmail author
Chapter
  • 102 Downloads

Abstract

The ability to record human neural activity in the form of field potentials from deep brain leads or surface brain electrodes has given us immense insight into the pathophysiology of movement disorders. These recordings have shed light on the oscillatory nature of neural network and its role in normal brain physiology as well as in disease. Based on these field potential recordings, excessive synchronization of the motor network in different frequency bands may be phenomenologically associated with diverse motor symptoms of movement disorders. Similar phenomena may also be present in other neurological and psychiatric diseases, allowing novel application of stereotactic procedures to understand and treat these disorders. In this chapter, we discuss recent findings regarding the role of network oscillatory activities in movement disorders, based on studies from local field potentials and electrocorticography potentials. We also examine how this knowledge is relevant for clinical practice, both in understanding the mechanism of existing deep brain stimulation therapy as well as in refining and improving existing treatments.

Keywords

Local field potentials Electrocorticography Basal ganglia Motor cortex Oscillations Movement disorders Deep brain stimulation 

Abbreviations

BG

Basal ganglia

BGTC

Basal ganglia thalamocortical

DBS

Deep brain stimulation

ECoG

Electrocorticography

EEG

Electroencephalography

GP

Globus pallidus

GPi

Globus pallidus interna

HFO

High-frequency oscillations

LFP

Local field potentials

M1

Primary motor cortex

PAC

Phase amplitude coupling

PD

Parkinson’s disease

STN

Subthalamic nucleus

References

  1. 1.
    Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci. 2018;21(7):903–19. Epub 2018/06/27.  https://doi.org/10.1038/s41593-018-0171-8. PubMed PMID: 29942039.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Panov F, Levin E, de Hemptinne C, Swann NC, Qasim S, Miocinovic S, Ostrem JL, Starr PA. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg. 2017;126(1):122–31. Epub 2016/02/27.  https://doi.org/10.3171/2015.11.JNS151341. PubMed PMID: 26918474; PMCID: PMC5001942.PubMedCrossRefGoogle Scholar
  3. 3.
    Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS, Ziman N, Ostrem JL, San Luciano M, Galifianakis NB, Starr PA. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson’s Disease. J Neurosci. 2016;36(24):6445–58.  https://doi.org/10.1523/JNEUROSCI.1128-16.2016. PubMed PMID: 27307233; PMCID: PMC5015781.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    DiLorenzo DJ, Mangubat EZ, Rossi MA, Byrne RW. Chronic unlimited recording electrocorticography-guided resective epilepsy surgery: technology-enabled enhanced fidelity in seizure focus localization with improved surgical efficacy. J Neurosurg. 2014;120(6):1402–14. Epub 2014/03/25.  https://doi.org/10.3171/2014.1.JNS131592. PubMed PMID: 24655096.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Ostrem JL, Galifianakis NB, Luciano MS, Wang SS, Ziman N, Taylor R, Starr PA. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J Neurosurg. 2018;128(2):605–16. Epub 2017/04/15.  https://doi.org/10.3171/2016.11.JNS161162. PubMed PMID: 28409730; PMCID: PMC5641233.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9. Epub 2004/06/26.  https://doi.org/10.1126/science.1099745. PubMed PMID: 15218136.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Csicsvari J, Jamieson B, Wise KD, Buzsaki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 2003;37(2):311–22. Epub 2003/01/28. PubMed PMID: 12546825.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64. PubMed PMID: 17532060.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242(4886):1654–64. Epub 1988/12/23. PubMed PMID: 3059497.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80. Epub 2005/09/10.  https://doi.org/10.1016/j.tics.2005.08.011. PubMed PMID: 16150631.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Thompson JA, Lanctin D, Ince NF, Abosch A. Clinical implications of local field potentials for understanding and treating movement disorders. Stereotact Funct Neurosurg. 2014;92(4):251–63. Epub 2014/08/30.  https://doi.org/10.1159/000364913. PubMed PMID: 25170784.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord. 2003;18(4):357–63. PubMed PMID: 12671940.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Oswal A, Brown P, Litvak V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol. 2013;26(6):662–70.  https://doi.org/10.1097/WCO.0000000000000034. PubMed PMID: 24150222.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Doyle LM, Yarrow K, Brown P. Lateralization of event-related beta desynchronization in the EEG during pre-cued reaction time tasks. Clin Neurophysiol. 2005;116(8):1879–88. Epub 2005/06/28.  https://doi.org/10.1016/j.clinph.2005.03.017. PubMed PMID: 15979401.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    van Wijk BC, Beek PJ, Daffertshofer A. Neural synchrony within the motor system: what have we learned so far? Front Hum Neurosci. 2012;6:252. Epub 2012/09/13.  https://doi.org/10.3389/fnhum.2012.00252. PubMed PMID: 22969718; PMCID: PMC3432872.
  16. 16.
    Engel AK, Fries P. Beta-band oscillations--signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65. PubMed PMID: 20359884.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci U S A. 1993;90(10):4470–4. PubMed PMID: 8506287; PMCID: PMC46533.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Klostermann F, Nikulin VV, Kuhn AA, Marzinzik F, Wahl M, Pogosyan A, Kupsch A, Schneider GH, Brown P, Curio G. Task-related differential dynamics of EEG alpha- and beta-band synchronization in cortico-basal motor structures. Eur J Neurosci. 2007;25(5):1604–15.  https://doi.org/10.1111/j.1460-9568.2007.05417.x. PubMed PMID: 17425586.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chakarov V, Naranjo JR, Schulte-Monting J, Omlor W, Huethe F, Kristeva R. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol. 2009;102(2):1115–20.  https://doi.org/10.1152/jn.91095.2008. PubMed PMID: 19458142.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, Locatelli M, Moxon KA, Villani RM. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189(2):369–79. PubMed PMID: 15380487.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol. 2009;215(1):20–8. PubMed PMID: 18929561.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI, Vandenberghe W, Nuttin B, Brown P. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–73. PubMed PMID: 18550758.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang DD, de Hemptinne C, Miocinovic S, Qasim SE, Miller AM, Ostrem JL, Galifianakis NB, San Luciano M, Starr PA. Subthalamic local field potentials in Parkinson’s disease and isolated dystonia: an evaluation of potential biomarkers. Neurobiol Dis. 2016;89:213–22. Epub 2016/02/18.  https://doi.org/10.1016/j.nbd.2016.02.015. PubMed PMID: 26884091.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rappel P, Marmor O, Bick AS, Arkadir D, Linetsky E, Castrioto A, Tamir I, Freedman SA, Mevorach T, Gilad M, Bergman H, Israel Z, Eitan R. Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Transl Psychiatry. 2018;8(1):118. Epub 2018/06/20.  https://doi.org/10.1038/s41398-018-0165-z. PubMed PMID: 29915200; PMCID: PMC6006433.
  25. 25.
    Kuhn AA, Brucke C, Schneider GH, Trottenberg T, Kivi A, Kupsch A, Capelle HH, Krauss JK, Brown P. Increased beta activity in dystonia patients after drug-induced dopamine deficiency. Exp Neurol. 2008;214(1):140–3. Epub 2008/09/02.  https://doi.org/10.1016/j.expneurol.2008.07.023. PubMed PMID: 18760276.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wang DD, de Hemptinne C, Miocinovic S, Ostrem JL, Galifianakis NB, San Luciano M, Starr PA. Pallidal deep-brain stimulation disrupts pallidal beta oscillations and coherence with primary motor cortex in Parkinson’s disease. J Neurosci. 2018;38(19):4556–68. Epub 2018/04/18.  https://doi.org/10.1523/JNEUROSCI.0431-18.2018. PubMed PMID: 29661966; PMCID: PMC5943981.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Weinberger M, Hutchison WD, Alavi M, Hodaie M, Lozano AM, Moro E, Dostrovsky JO. Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol. 2012;123(2):358–68. Epub 2011/08/17.  https://doi.org/10.1016/j.clinph.2011.07.029. PubMed PMID: 21843964.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126(Pt 12):2597–608. PubMed PMID: 12937079.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jimenez-Shahed J, Telkes I, Viswanathan A, Ince NF. GPi oscillatory activity differentiates tics from the resting state, voluntary movements, and the unmedicated Parkinsonian state. Front Neurosci. 2016;10:436.  https://doi.org/10.3389/fnins.2016.00436. PubMed PMID: 27733815; PMCID: PMC5039204.
  30. 30.
    Silberstein P, Pogosyan A, Kuhn AA, Hotton G, Tisch S, Kupsch A, Dowsey-Limousin P, Hariz MI, Brown P. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain. 2005;128(Pt 6):1277–91. PubMed PMID: 15774503.PubMedCrossRefGoogle Scholar
  31. 31.
    Malekmohammadi M, Shahriari Y, AuYong N, O’Keeffe A, Bordelon Y, Hu X, Pouratian N. Pallidal stimulation in Parkinson disease differentially modulates local and network beta activity. J Neural Eng. 2018;15(5):056016. Epub 2018/07/05.  https://doi.org/10.1088/1741-2552/aad0fb. PubMed PMID: 29972146; PMCID: PMC6125208.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Canolty RT, Ganguly K, Kennerley SW, Cadieu CF, Koepsell K, Wallis JD, Carmena JM. Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies. Proc Natl Acad Sci U S A. 2010;107(40):17356–61.  https://doi.org/10.1073/pnas.1008306107. PubMed PMID: 20855620; PMCID: PMC2951408.CrossRefGoogle Scholar
  33. 33.
    Canolty RT, Knight RT. The functional role of cross-frequency coupling. Trends Cogn Sci. 2010;14(11):506–15. PubMed PMID: 20932795.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain. 2011;134(Pt 2):359–74. PubMed PMID: 21147836.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez-Azcarate J, Tainta M, Rodriguez-Oroz MC, Valencia M, Gonzalez R, Guridi J, Iriarte J, Obeso JA, Artieda J, Alegre M. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci. 2010;30(19):6667–77. PubMed PMID: 20463229.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    AuYong N, Malekmohammadi M, Ricks-Oddie J, Pouratian N. Movement-modulation of local power and phase amplitude coupling in bilateral globus pallidus interna in Parkinson disease. Front Hum Neurosci. 2018;12:270. Epub 2018/07/25.  https://doi.org/10.3389/fnhum.2018.00270. PubMed PMID: 30038563; PMCID: PMC6046436.
  37. 37.
    Connolly AT, Jensen AL, Bello EM, Netoff TI, Baker KB, Johnson MD, Vitek JL. Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity. J Neurosci. 2015;35(15):6231–40.  https://doi.org/10.1523/JNEUROSCI.4137-14.2015. PubMed PMID: 25878293; PMCID: PMC4397612.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ, Ojemann JG, Ostrem JL, Galifianakis NB, Starr PA. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110(12):4780–5. Epub 2013/03/09.  https://doi.org/10.1073/pnas.1214546110. PubMed PMID: 23471992; PMCID: 3606991.CrossRefGoogle Scholar
  39. 39.
    de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, Starr PA. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.  https://doi.org/10.1038/nn.3997. PubMed PMID: 25867121; PMCID: PMC4414895.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cole SR, van der Meij R, Peterson EJ, de Hemptinne C, Starr PA, Voytek B. Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J Neurosci. 2017;37(18):4830–40. Epub 2017/04/19.  https://doi.org/10.1523/JNEUROSCI.2208-16.2017. PubMed PMID: 28416595; PMCID: PMC5426572.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Saleem AB, Lien AD, Krumin M, Haider B, Roson MR, Ayaz A, Reinhold K, Busse L, Carandini M, Harris KD. Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron. 2017;93(2):315–22. Epub 2017/01/20.  https://doi.org/10.1016/j.neuron.2016.12.028. PubMed PMID: 28103479; PMCID: PMC5263254.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Berke JD, Okatan M, Skurski J, Eichenbaum HB. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron. 2004;43(6):883–96. Epub 2004/09/15.  https://doi.org/10.1016/j.neuron.2004.08.035. PubMed PMID: 15363398.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Brown P, Kupsch A, Magill PJ, Sharott A, Harnack D, Meissner W. Oscillatory local field potentials recorded from the subthalamic nucleus of the alert rat. Exp Neurol. 2002;177(2):581–5. PubMed PMID: 12429204.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V, Brown P. Movement-related changes in synchronization in the human basal ganglia. Brain. 2002;125(Pt 6):1235–46. PubMed PMID: 12023312.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Williams D, Tijssen M, Van Bruggen G, Bosch A, Insola A, Di Lazzaro V, Mazzone P, Oliviero A, Quartarone A, Speelman H, Brown P. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain. 2002;125(Pt 7):1558–69. PubMed PMID: 12077005.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kempf F, Brucke C, Salih F, Trottenberg T, Kupsch A, Schneider GH, Doyle Gaynor LM, Hoffmann KT, Vesper J, Wohrle J, Altenmuller DM, Krauss JK, Mazzone P, Di Lazzaro V, Yelnik J, Kuhn AA, Brown P. Gamma activity and reactivity in human thalamic local field potentials. Eur J Neurosci. 2009;29(5):943–53. PubMed PMID: 19291224.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Miocinovic S, Swann NC, de Hemptinne C, Miller A, Ostrem JL, Starr PA. Cortical gamma oscillations in isolated dystonia. Parkinsonism Relat Disord. 2018.  https://doi.org/10.1016/j.parkreldis.2018.01.017. PubMed PMID: 29371063.CrossRefGoogle Scholar
  48. 48.
    Wang SY, Aziz TZ, Stein JF, Liu X. Time-frequency analysis of transient neuromuscular events: dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. J Neurosci Methods. 2005;145(1–2):151–8. Epub 2005/06/01.  https://doi.org/10.1016/j.jneumeth.2004.12.009. PubMed PMID: 15922033.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, Vesper J, Wojtecki L, Schnitzler A. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain. 2013;136(Pt 12):3659–70. Epub 2013/10/25.  https://doi.org/10.1093/brain/awt271. PubMed PMID: 24154618.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Kane A, Hutchison WD, Hodaie M, Lozano AM, Dostrovsky JO. Enhanced synchronization of thalamic theta band local field potentials in patients with essential tremor. Exp Neurol. 2009;217(1):171–6. Epub 2009/02/24.  https://doi.org/10.1016/j.expneurol.2009.02.005. PubMed PMID: 19233174.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Liu X, Griffin IC, Parkin SG, Miall RC, Rowe JG, Gregory RP, Scott RB, Aziz TZ, Stein JF. Involvement of the medial pallidum in focal myoclonic dystonia: a clinical and neurophysiological case study. Mov Disord. 2002;17(2):346–53. PubMed PMID: 11921122.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Liu X, Wang S, Yianni J, Nandi D, Bain PG, Gregory R, Stein JF, Aziz TZ. The sensory and motor representation of synchronized oscillations in the globus pallidus in patients with primary dystonia. Brain. 2008;131(Pt 6):1562–73.  https://doi.org/10.1093/brain/awn083. PubMed PMID: 18487278.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen CC, Kuhn AA, Hoffmann KT, Kupsch A, Schneider GH, Trottenberg T, Krauss JK, Wohrle JC, Bardinet E, Yelnik J, Brown P. Oscillatory pallidal local field potential activity correlates with involuntary EMG in dystonia. Neurology. 2006;66(3):418–20.  https://doi.org/10.1212/01.wnl.0000196470.00165.7d. PubMed PMID: 16476944.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen CC, Kuhn AA, Trottenberg T, Kupsch A, Schneider GH, Brown P. Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3-12 Hz in patients with dystonia. Exp Neurol. 2006;202(2):480–6. Epub 2006/08/26. S0014-4886(06)00428-6 [pii].  https://doi.org/10.1016/j.expneurol.2006.07.011. PubMed PMID: 16930593.CrossRefGoogle Scholar
  55. 55.
    Sharott A, Grosse P, Kuhn AA, Salih F, Engel AK, Kupsch A, Schneider GH, Krauss JK, Brown P. Is the synchronization between pallidal and muscle activity in primary dystonia due to peripheral afferance or a motor drive? Brain. 2008;131(Pt 2):473–84.  https://doi.org/10.1093/brain/awm324. PubMed PMID: 18178569.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Barow E, Neumann WJ, Brucke C, Huebl J, Horn A, Brown P, Krauss JK, Schneider GH, Kuhn AA. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements. Brain. 2014;137(Pt 11):3012–24.  https://doi.org/10.1093/brain/awu258. PubMed PMID: 25212852; PMCID: PMC4813762.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ, Jr. Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg. 2002;97(2):370–87. Epub 2002/08/21.  https://doi.org/10.3171/jns.2002.97.2.0370. PubMed PMID: 12186466.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K, Yousry T, Hariz MI, Brown P. Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol. 2006;198(1):214–21. PubMed PMID: 16403500.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Trottenberg T, Kupsch A, Schneider GH, Brown P, Kuhn AA. Frequency-dependent distribution of local field potential activity within the subthalamic nucleus in Parkinson’s disease. Exp Neurol. 2007;205(1):287–91. PubMed PMID: 17336961.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zaidel A, Spivak A, Shpigelman L, Bergman H, Israel Z. Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a hidden Markov model. Mov Disord. 2009;24(12):1785–93. PubMed PMID: 19533755.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z. Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133(Pt 7):2007–21. PubMed PMID: 20534648.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Miyagi Y, Okamoto T, Morioka T, Tobimatsu S, Nakanishi Y, Aihara K, Hashiguchi K, Murakami N, Yoshida F, Samura K, Nagata S, Sasaki T. Spectral analysis of field potential recordings by deep brain stimulation electrode for localization of subthalamic nucleus in patients with Parkinson’s disease. Stereotact Funct Neurosurg. 2009;87(4):211–8. Epub 2009/07/03.  https://doi.org/10.1159/000225974. PubMed PMID: 19571612.
  63. 63.
    Telkes I, Jimenez-Shahed J, Viswanathan A, Abosch A, Ince NF. Prediction of STN-DBS electrode implantation track in Parkinson’s disease by using local field potentials. Front Neurosci. 2016;10:198. Epub 2016/06/01.  https://doi.org/10.3389/fnins.2016.00198. PubMed PMID: 27242404; PMCID: PMC4860394.
  64. 64.
    Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science. 2009;324(5925):354–9. Epub 2009/03/21.  https://doi.org/10.1126/science.1167093. PubMed PMID: 19299587.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, Arbuthnott GW, Yung WH. Therapeutic deep brain stimulation in parkinsonian rats directly influences motor cortex. Neuron. 2012;76(5):1030–41. Epub 2012/12/12.  https://doi.org/10.1016/j.neuron.2012.09.032. PubMed PMID: 23217750.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Anderson RW, Farokhniaee A, Gunalan K, Howell B, McIntyre CC. Action potential initiation, propagation, and cortical invasion in the hyperdirect pathway during subthalamic deep brain stimulation. Brain Stimul. 2018;11(5):1140–50. Epub 2018/05/22.  https://doi.org/10.1016/j.brs.2018.05.008. PubMed PMID: 29779963; PMCID: PMC6109410.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Miocinovic S, de Hemptinne C, Chen W, Isbaine F, Willie JT, Ostrem JL, Starr PA. Cortical potentials evoked by subthalamic stimulation demonstrate a short latency hyperdirect pathway in humans. J Neurosci. 2018;38(43):9129–41. Epub 2018/09/12.  https://doi.org/10.1523/JNEUROSCI.1327-18.2018. PubMed PMID: 30201770; PMCID: PMC6199405.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84. Epub 2011/10/25.  https://doi.org/10.1016/j.neuron.2011.08.023. PubMed PMID: 22017994.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57. Epub 2013/07/16.  https://doi.org/10.1002/ana.23951. PubMed PMID: 23852650; PMCID: 3886292.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Rosa M, Arlotti M, Marceglia S, Cogiamanian F, Ardolino G, Fonzo AD, Lopiano L, Scelzo E, Merola A, Locatelli M, Rampini PM, Priori A. Adaptive deep brain stimulation controls levodopa-induced side effects in Parkinsonian patients. Mov Disord. 2017;32(4):628–9. Epub 2017/02/18.  https://doi.org/10.1002/mds.26953. PubMed PMID: 28211585; PMCID: PMC5412843.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Swann NC, de Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R, Ostrem JL, Chizeck HJ, Starr PA. Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing. J Neural Eng. 2018;15(4):046006. Epub 2018/05/10.  https://doi.org/10.1088/1741-2552/aabc9b. PubMed PMID: 29741160; PMCID: PMC6021210.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Herron JA, Thompson MC, Brown T, Chizeck HJ, Ojemann JG, Ko AL. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J Neurosurg. 2017;127(3):580–7. Epub 2016/11/20.  https://doi.org/10.3171/2016.8.JNS16536. PubMed PMID: 27858575.PubMedCrossRefGoogle Scholar
  73. 73.
    Haddock A, Mitchell KT, Miller A, Ostrem JL, Chizeck HJ, Miocinovic S. Automated deep brain stimulation programming for tremor. IEEE Trans Neural Syst Rehabil Eng. 2018;26(8):1618–25. Epub 2018/07/12.  https://doi.org/10.1109/TNSRE.2018.2852222. PubMed PMID: 29994714.PubMedCrossRefGoogle Scholar
  74. 74.
    Roy HA, Green AL, Aziz TZ. State of the art: novel applications for deep brain stimulation. Neuromodulation. 2018;21(2):126–34. Epub 2017/05/19.  https://doi.org/10.1111/ner.12604. PubMed PMID: 28516669.CrossRefGoogle Scholar
  75. 75.
    Holtzheimer PE, Mayberg HS. Deep brain stimulation for psychiatric disorders. Annu Rev Neurosci. 2011;34:289–307. Epub 2011/06/23.  https://doi.org/10.1146/annurev-neuro-061010-113638. PubMed PMID: 21692660; PMCID: PMC4413475.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C, Goodman W, Kumsa D, Grill WM, Walker HC, Johnson MD, Vitek JL, Greene D, Rizzuto DS, Song D, Berger TW, Hampson RE, Deadwyler SA, Hochberg LR, Schiff ND, Stypulkowski P, Worrell G, Tiruvadi V, Mayberg HS, Jimenez-Shahed J, Nanda P, Sheth SA, Gross RE, Lempka SF, Li L, Deeb W, Okun MS. Evolving applications, technological challenges and future opportunities in neuromodulation: proceedings of the fifth annual deep brain stimulation think tank. Front Neurosci. 2017;11:734. Epub 2018/02/09.  https://doi.org/10.3389/fnins.2017.00734. PubMed PMID: 29416498; PMCID: PMC5787550.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Doris D. Wang
    • 1
  • Witney Chen
    • 1
  • Philip A. Starr
    • 1
  • Coralie de Hemptinne
    • 1
    Email author
  1. 1.Department of Neurological SurgeryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations