Structural Imaging and Target Visualization

  • Himanshu Sharma
  • Charles B. MikellEmail author


The explosion in neuroimaging techniques beginning in the 1970s has led to a revolution in our ability to identify, define, and visualize targets deep within the brain. These techniques have since been adopted and adapted to the neurosurgical OR, improving outcomes and making new targets amenable to intervention. They simultaneously improve consistency of targeting key structures across patients while allowing for individualization of targets and trajectories for each patient, thus compensating for individual variability as well as disease-specific structural changes. This chapter outlines the theoretical and practical principles of imaging modalities involved in target visualization. These principles are discussed with particular focus on decision making as well as the clinical drawbacks and merits of specific options and approaches. Further, we discuss the integration of these approaches into the neurosurgical workflow, beginning from operative planning and concluding with postsurgical imaging and follow-up. Finally, we engage in a limited discussion of functional neuroimaging in the context of its ability to help define and visualize structural targets in the brain.


Neuroimaging MRI Functional neurosurgery DBS Stereotactic Neuroradiology PET fMRI CT 



Apparent diffusion coefficient


Amyotrophic lateral sclerosis


Blood oxygen level dependent


Cerebrospinal fluid


Computed tomography


Deep brain stimulation


Diffusion-weighted imaging


Echo-planar imaging


Food and Drug Administration




Fluid-attenuated inversion recovery


Functional magnetic resonance imaging


Fast spin echo


Globus pallidus internus


Gradient recalled echo


Laser interstitial thermal therapy


Magnetic resonance imaging


Obsessive-compulsive disorder


Positron emission tomography




Spin echo


Substantia nigra


Short tau inversion recovery


Subthalamic nucleus


Susceptibility-weighted imaging




Echo time


Repetition time


  1. 1.
    Horsley V, Clarke RH. The structure and functions of the cerebellum examined by a new method. Brain. 1908;31(1):45–124.CrossRefGoogle Scholar
  2. 2.
    Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.Google Scholar
  4. 4.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Stuttgart: Thieme; 1988.Google Scholar
  5. 5.
    Downes A, Pouratian N. Advanced neuroimaging techniques for central neuromodulation. Neurosurg Clin N Am. 2014;25(1):173–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Littlechild P, Varma TRK, Eldridge PR, Fox S, Forster A, Fletcher N, et al. Variability in position of the subthalamic nucleus targeted by magnetic resonance imaging and microelectrode recordings as compared to atlas co-ordinates. Stereotact Funct Neurosurg. 2003;80(1–4):82–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Pouratian N, Bookheimer SY. The reliability of neuroanatomy as a predictor of eloquence: a review. Neurosurg Focus. 2010;28(2):E3.PubMedCrossRefGoogle Scholar
  8. 8.
    Daniluk S, Davies K, Ellias SA, Novak P, Nazzaro JM. Assessment of the variability in the anatomical position and size of the subthalamic nucleus among patients with advanced Parkinson’s disease using magnetic resonance imaging. Acta Neurochir. 2010;152(2):201–10; discussion 210.PubMedCrossRefGoogle Scholar
  9. 9.
    Patel NK, Khan S, Gill SS. Comparison of atlas and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg. 2008;86(3):153–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Ballmaier M, Sowell ER, Thompson PM, Kumar A, Narr KL, Lavretsky H, et al. Mapping brain size and cortical gray matter changes in elderly depression. Biol Psychiatry. 2004;55(4):382–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Im K, Lee JM, Lee J, Shin YW, Kim IY, Kwon JS, et al. Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. NeuroImage. 2006;31(1):31–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Nowinski WL, Belov D, Thirunavuukarasuu A, Benabid AL. A probabilistic functional atlas of the VIM nucleus constructed from pre-, intra- and postoperative electrophysiological and neuroimaging data acquired during the surgical treatment of Parkinson’s disease patients. Stereotact Funct Neurosurg. 2005;83(5–6):190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nowinski WL, Belov D, Benabid AL. An algorithm for rapid calculation of a probabilistic functional atlas of subcortical structures from electrophysiological data collected during functional neurosurgery procedures. NeuroImage. 2003;18(1):143–55.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Vega RA, Holloway KL, Larson PS. Image-guided deep brain stimulation. Neurosurg Clin N Am. 2014;25(1):159–72.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Liu X, Rowe J, Nandi D, Hayward G, Parkin S, Stein J, et al. Localisation of the subthalamic nucleus using radionics image fusion™ and Stereoplan™ combined with field potential recording. Stereotact Funct Neurosurg. 2001;76:63–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen D, Lustgarten J, Miller E, Khandji A, Goodman RR. Effects of coregistration of MR to CT images on MR stereotactic accuracy. J Neurosurg. 1995;82(5):772–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Watanabe Y, Perera GM, Mooij RB. Image distortion in MRI-based polymer gel dosimetry of Gamma Knife stereotactic radiosurgery systems. Med Phys. 2002;29(5):797–802.PubMedCrossRefGoogle Scholar
  18. 18.
    Pollock BE, Link MJ, Foote RL. Failure rate of contemporary low-dose radiosurgical technique for vestibular schwannoma. J Neurosurg. 2009;111(4):840–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen SY, Tsai ST, Hung HY, Lin SH, Pan YH, Lin SZ. Targeting the subthalamic nucleus for deep brain stimulation – a comparative study between magnetic resonance images alone and fusion with computed tomographic images. World Neurosurg. 2011;75(1):132–7; discussion 22–4, 29–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Jonker B. Image fusion pitfalls for cranial radiosurgery. Surg Neurol Int. 2013;4(Suppl 3):S123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kelman C, Ramakrishnan V, Davies A, Holloway K. Analysis of stereotactic accuracy of the cosman-robert-wells frame and nexframe frameless systems in deep brain stimulation surgery. Stereotact Funct Neurosurg. 2010;88(5):288–95.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Holloway K, Docef A. A quantitative assessment of the accuracy and reliability of O-arm images for deep brain stimulation surgery. Neurosurgery. 2013;72(1 Suppl Operative):47–57.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Black PML, Moriarty T, Alexander E, Stieg P, Woodard EJ, Gleason PL, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42; discussion 842–5.CrossRefGoogle Scholar
  25. 25.
    Ostrem JL, Galifianakis NB, Markun LC, Grace JK, Martin AJ, Starr PA, et al. Clinical outcomes of PD patients having bilateral STN DBS using high-field interventional MR-imaging for lead placement. Clin Neurol Neurosurg. 2013;115(6):708–12.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, et al. Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir. 2005;147(11):1175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Andrade-Souza YM, Schwalb JM, Hamani C, Hoque T, Saint-Cyr J, Lozano AM. Comparison of 2-dimensional magnetic resonance imaging and 3-planar reconstruction methods for targeting the subthalamic nucleus in Parkinson disease. Surg Neurol. 2005;63(4):357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ellenbogen JR, Tuura R, Ashkan K. Localisation of DBS electrodes post-implantation, to CT or MRI? Which is the best option? Stereotact Funct Neurosurg. 2018;96(5):347–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hyam JA, Akram H, Foltynie T, Limousin P, Hariz M, Zrinzo L. What you see is what you get: Lead location within deep brain structures is accurately depicted by stereotactic magnetic resonance imaging. Neurosurgery. 2015;11 Suppl 3:412–9; discussion 419.Google Scholar
  30. 30.
    Bonneville F, Welter ML, Elie C, du Montcel ST, Hasboun D, Menuel C, et al. Parkinson disease, brain volumes, and subthalamic nucleus stimulation. Neurology. 2005;64(9):1598 LP–1604.CrossRefGoogle Scholar
  31. 31.
    Welter ML, Houeto JL, Tezenas du Montcel S, Mesnage V, Bonnet AM, Pillon B, et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain. 2002;125(3):575–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Kates R, Atkinson D, Brant-Zawadzki M. Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications. Top Magn Reson Imaging. 1996;8(6):389–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Mohindra N, Neyaz Z. Magnetic resonance sequences: Practical neurological applications. Neurol India. 2015;63(2):241–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hartman LA, Nace SR, Maksimovic JH, Rusinak D, Rowley HA. Epilepsy imaging: approaches and protocols. Appl Radiol. 2015;44(5):8–20.Google Scholar
  35. 35.
    Poustchi-Amin M, Mirowitz SA, Brown JJ, McKinstry RC, Li T. Principles and applications of echo-planar imaging: a review for the general radiologist. Radiographics. 2001;21(3):767–79.PubMedCrossRefGoogle Scholar
  36. 36.
    Pipe J. Pulse sequences for diffusion-weighted MRI. In: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. 2nd ed: Elsevier Inc; 2013. p. 11–34.Google Scholar
  37. 37.
    Nucifora PGP, Verma R, Lee S-K, Melhem ER. Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology. 2007;245(2):367–84.PubMedCrossRefGoogle Scholar
  38. 38.
    Johansen-Berg H, Gutman DA, Behrens TEJ, Matthews PM, Rushworth MFS, Katz E, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18(6):1374–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Rushworth MFS, Behrens TEJ, Johansen-Berg H. Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex. 2006;16(10):1418–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Lenglet C, Abosch A, Yacoub E, de Martino F, Sapiro G, Harel N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One. 2012;7(1):e29153.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Elolf E, Bockermann V, Gringel T, Knauth M, Dechent P, Helms G. Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2∗) contrast using multiple gradient echoes. Am J Neuroradiol. 2007;28(6):1093–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Jung NY, Chang JW. Magnetic resonance-guided focused ultrasound in neurosurgery: taking lessons from the past to inform the future. J Korean Med Sci. 2018;33(44):e279.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Grewal SS, Zimmerman RS, Worrell G, Brinkmann BH, Tatum WO, Crepeau AZ, et al. Laser ablation for mesial temporal epilepsy: a multi-site, single institutional series. J Neurosurg. 2018:1–8.Google Scholar
  44. 44.
    Richter EO, Hoque T, Halliday W, Lozano AM, Saint-Cyr JA. Determining the position and size of the subthalamic nucleus based on magnetic resonance imaging results in patients with advanced Parkinson disease. J Neurosurg. 2004;100(3):541–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Schlösser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, et al. Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry. 1998;64(4):492–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Venkatraghavan L, Manninen P, Mak P, Lukitto K, Hodaie M, Lozano A. Anesthesia for functional neurosurgery: review of complications. J Neurosurg Anesthesiol. 2006;18(1):64–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17(2):825–41.PubMedCrossRefGoogle Scholar
  48. 48.
    Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2003;51(1):103–14.CrossRefGoogle Scholar
  49. 49.
    Forbes KPN, Pipe JG, Bird CR, Heiserman JE. PROPELLER MRI: clinical testing of a novel technique for quantification and compensation of head motion. J Magn Reson Imaging. 2001;14(3):215–22.PubMedCrossRefGoogle Scholar
  50. 50.
    Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, et al. Motion correction in MRI of the brain. Phys Med Biol. 2016;61(5):R32–56.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One. 2012;7(5):e37328.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Adair ER, Berglund LG. On the thermoregulatory consequences of NMR imaging. Magn Reson Imaging. 1986;4(4):321–33.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Dormont D, Seidenwurm D, Galanaud D, Cornu P, Yelnik J, Bardinet E. Neuroimaging and deep brain stimulation. AJNR Am J Neuroradiol. 2010;31(1):15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sammartino F, Krishna V, Sankar T, Fisico J, Kalia SK, Hodaie M, et al. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients. J Neurosurg JNS. 2017;127(4):892–8.CrossRefGoogle Scholar
  55. 55.
    Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O. Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One. 2015;10(7):1–17.CrossRefGoogle Scholar
  56. 56.
    Mattern H, Sciarra A, Godenschweger F, Stucht D, Lüsebrink F, Rose G, et al. Prospective motion correction enables highest resolution time-of-flight angiography at 7T. Magn Reson Med. 2018;80(1):248–58.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 Tesla. Neurosurgery. 2010;67(6):1745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Duyn JH, van Gelderen P, Li T-Q, de Zwart JA, Koretsky AP, Fukunaga M. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci. 2007;104(28):11796–801.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lupo JM, Li Y, Hess CP, Nelson SJ. Advances in ultra-high field MRI for the clinical management of patients with brain tumors. Curr Opin Neurol. 2011;24(6):605–15.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Vargas MI, Martelli P, Xin L, Ipek O, Grouiller F, Pittau F, et al. Clinical neuroimaging using 7 T MRI: challenges and prospects. J Neuroimaging. 2018;28(1):5–13.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Menuel C, Garnero L, Bardinet E, Poupon F, Phalippou D, Dormont D. Characterization and correction of distortions in stereotactic magnetic resonance imaging for bilateral subthalamic stimulation in Parkinson disease. J Neurosurg. 2005;103(2):256–66.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Alexander E 3rd, Kooy HM, van Herk M, Schwartz M, Barnes PD, Tarbell N, et al. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg. 1995;83(2):271–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kooy HM, Van Herk M, Barnes PD, Alexander E, Dunbar SF, Tarbell NJ, et al. Image fusion for stereotactic radiotherapy and radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 1994;28(5):1229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pinsker MO, Herzog J, Falk D, Volkmann J, Deuschl G, Mehdorn M. Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT. Zentralbl Neurochir. 2008;69(3):144–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yoshida F, Miyagi Y, Morioka T, Hashiguchi K, Murakami N, Matsumoto K, et al. Assessment of contact location in subthalamic stimulation for Parkinson’s disease by co-registration of computed tomography images. Stereotact Funct Neurosurg. 2008;86(3):162–6.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Geevarghese R, Ogorman Tuura R, Lumsden DE, Samuel M, Ashkan K. Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review. Stereotact Funct Neurosurg. 2016;94(3):159–63.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    O’Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K. CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg. 2009;87(4):205–10.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bot M, Van Den Munckhof P, Bakay R, Stebbins G, Verhagen Metman L. Accuracy of intraoperative computed tomography during deep brain stimulation procedures: comparison with postoperative magnetic resonance imaging. Stereotact Funct Neurosurg. 2017;95(3):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology. 2018;60(11):1151–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Tharin S, Golby A. Functional brain mapping and its applications to neurosurgery. Neurosurgery. 2007;60(4 Suppl 2):185–201; discussion 201–2.PubMedGoogle Scholar
  71. 71.
    Volkow ND, Rosen B, Farde L. Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci. 1997;94(7):2787–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Rezai AR, Lozano AM, Crawley AP, Joy MLG, Davis KD, Kwan CL, et al. Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. J Neurosurg. 1999;90(3):583–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Krings T, Reinges MHT, Erberich S, Kemeny S, Rohde V, Spetzger U, et al. Functional MRI for presurgical planning: problems, artefacts, and solution strategies. J Neurol Neurosurg Psychiatry. 2001;70(6):749–60.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Devlin JT, Russell RP, Davis MH, Price CJ, Wilson J, Moss HE, et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. NeuroImage. 2000;11(6 Pt 1):589–600.PubMedCrossRefGoogle Scholar
  76. 76.
    Tyndall AJ, Reinhardt J, Tronnier V, Mariani L, Stippich C. Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. Eur Radiol. 2017;27(1):267–78.PubMedCrossRefGoogle Scholar
  77. 77.
    Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E. Preoperative fMRI in tumour surgery. Eur Radiol. 2009;19(10):2523–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Rosazza C, Ghielmetti F, Minati L, Vitali P, Giovagnoli AR, Deleo F, et al. Preoperative language lateralization in temporal lobe epilepsy (TLE) predicts peri-ictal, pre- and post-operative language performance: an fMRI study. Neuroimage Clin. 2013;3:73–83.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Papanicolaou AC, Rezaie R, Narayana S, Choudhri AF, Wheless JW, Castillo EM, et al. Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia. 2014;55(5):629–32.CrossRefGoogle Scholar
  80. 80.
    Lee HW, Arora J, Papademetris X, Tokoglu F, Negishi M, Scheinost D, et al. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology. 2014;83(24):2269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Boerwinkle VL, Foldes ST, Torrisi SJ, Temkit H, Gaillard WD, Kerrigan JF, et al. Subcentimeter epilepsy surgery targets by resting state functional magnetic resonance imaging can improve outcomes in hypothalamic hamartoma. Epilepsia. 2018;59(12):2284–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer. 2014;120(22):3433–45.PubMedCrossRefGoogle Scholar
  83. 83.
    Yang PF, Pei JS, Zhang HJ, Lin Q, Mei Z, Zhong ZH, et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav. 2014;41:91–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Petrirena GJ, Goldman S, Delattre JY. Advances in PET imaging of brain tumors: a referring physician’s perspective. Curr Opin Oncol. 2011;23(6):617–23.PubMedCrossRefGoogle Scholar
  85. 85.
    Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry. 1999;156(5):675–82.PubMedGoogle Scholar
  86. 86.
    Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate Gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64(6):461–7.CrossRefGoogle Scholar
  88. 88.
    Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Medical Scientist Training ProgramStony Brook University School of MedicineStony BrookUSA
  2. 2.Department of NeurosurgeryStony Brook University HospitalStony BrookUSA

Personalised recommendations