Imaging: Patient Selection, Targeting, and Outcome Biomarkers

  • Vibhor KrishnaEmail author
  • Nicole A. Young
  • Francesco Sammartino


In this chapter, we introduce the recent advances in our understanding of the mechanisms underlying the efficacy of deep brain stimulation (DBS), specifically the network modulation hypothesis. We discuss the implications of integrating this hypothesis, mainly for three main areas: (1) identification of therapeutic zones using tractography, (2) optimization of stimulation parameters to address patient-specific network dysfunction, and (3) improved patient selection based on markers for network dysfunction in addition to clinical phenotypes. In the first section we describe the rationale and approaches for the visualization of therapeutic targets with pre-operative diffusion tractography. The assumption that efficacious stimulation is mediated, in part, through stimulation of white matter tracts that are efferent/afferent or in the vicinity of the nucleus, brings us to the second section where we discuss a framework for stimulation titration based on structural connections of DBS electrodes. In the last section, we highlight the need to identify disease-specific biomarkers of clinical outcomes to improve patient selection for existing and novel DBS applications.


Diffusion MRI Tensor modeling Microstructural changes Neurodegeneration Patient selection DBS Focused ultrasound  Functional neurosurgery Free-water correction ODF 


  1. 1.
    Sammartino F, Krishna V, King NK, Bruno V, Kalia S, Hodaie M, et al. Sequence of electrode implantation and outcome of deep brain stimulation for Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87(8):859–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Papavassiliou E, Rau G, Heath S, Abosch A, Barbaro NM, Larson PS, et al. Thalamic deep brain stimulation for essential tremor: relation of lead location to outcome. Neurosurgery. 2004;54(5):1120–30; discussion 9–30.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62(8):1250–5.CrossRefGoogle Scholar
  4. 4.
    Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165.CrossRefPubMedGoogle Scholar
  5. 5.
    Filkowski MM, Mayberg HS, Holtzheimer PE. Considering eligibility for studies of deep brain stimulation for treatment-resistant depression: insights from a clinical trial in unipolar and bipolar depression. J ECT. 2016;32(2):122–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5(4):382–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Benazzouz A, Piallat B, Pollak P, Benabid AL. Responses of substantia nigra pars reticulata and globus pallidus complex to high frequency stimulation of the subthalamic nucleus in rats: electrophysiological data. Neurosci Lett. 1995;189(2):77–80.CrossRefPubMedGoogle Scholar
  8. 8.
    Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, et al. Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain. 2005;128(Pt 10):2372–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res. 2004;156(3):274–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Pahapill PA, Levy R, Dostrovsky JO, Davis KD, Rezai AR, Tasker RR, et al. Tremor arrest with thalamic microinjections of muscimol in patients with essential tremor. Ann Neurol. 1999;46(2):249–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346(8987):1383–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, et al. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med. 2000;342(7):461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001;85(4):1351–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64:355–405.CrossRefPubMedGoogle Scholar
  15. 15.
    Hristova A, Lyons K, Troster AI, Pahwa R, Wilkinson SB, Koller WC. Effect and time course of deep brain stimulation of the globus pallidus and subthalamus on motor features of Parkinson’s disease. Clin Neuropharmacol. 2000;23(4):208–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Fasano A, Deuschl G. Therapeutic advances in tremor. Mov Disord. 2015;30(11):1557–65.CrossRefPubMedGoogle Scholar
  17. 17.
    Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol. 2015;133:27–49.CrossRefPubMedGoogle Scholar
  18. 18.
    Udupa K, Ghahremani A, Chen R. Are we close to the advent of closed loop deep brain stimulation in Parkinson’s disease? Mov Disord. 2015;30(10):1326.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee JY, Deogaonkar M, Rezai A. Deep brain stimulation of globus pallidus internus for dystonia. Parkinsonism Relat Disord. 2007;13(5):261–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain. 1994;117(Pt 4):877–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Vitek JL. Deep brain stimulation: how does it work? Cleve Clin J Med. 2008;75 Suppl 2:S59–65.CrossRefPubMedGoogle Scholar
  22. 22.
    McCairn KW, Iriki A, Isoda M. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders. J Neurophysiol. 2015;114(4):2090–104.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van Hartevelt TJ, Cabral J, Deco G, Moller A, Green AL, Aziz TZ, et al. Neural plasticity in human brain connectivity: the effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. PLoS One. 2014;9(1):e86496.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Phillips MD, Baker KB, Lowe MJ, Tkach JA, Cooper SE, Kopell BH, et al. Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus--initial experience. Radiology. 2006;239(1):209–16.CrossRefPubMedGoogle Scholar
  25. 25.
    Rezai AR, Lozano AM, Crawley AP, Joy ML, Davis KD, Kwan CL, et al. Thalamic stimulation and functional magnetic resonance imaging: localization of cortical and subcortical activation with implanted electrodes. Technical note. J Neurosurg. 1999;90(3):583–90.CrossRefGoogle Scholar
  26. 26.
    Lee KH, Chang SY, Roberts DW, Kim U. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg. 2004;101(3):511–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Ashby P, Paradiso G, Saint-Cyr JA, Chen R, Lang AE, Lozano AM. Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clin Neurophysiol. 2001;112(3):431–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Silberstein P, Pogosyan A, Kuhn AA, Hotton G, Tisch S, Kupsch A, et al. Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain. 2005;128(Pt 6):1277–91.CrossRefGoogle Scholar
  29. 29.
    Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes GR, Penny WD, et al. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients. NeuroImage. 2010;50(4):1578–88.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuriakose R, Saha U, Castillo G, Udupa K, Ni Z, Gunraj C, et al. The nature and time course of cortical activation following subthalamic stimulation in Parkinson’s disease. Cereb Cortex (New York, NY: 1991). 2010;20(8):1926–36.Google Scholar
  31. 31.
    Ko JH, Tang CC, Eidelberg D. Brain stimulation and functional imaging with fMRI and PET. Handb Clin Neurol. 2013;116:77–95.CrossRefGoogle Scholar
  32. 32.
    Paschali A, Constantoyannis C, Angelatou F, Vassilakos P. Perfusion brain SPECT in assessing motor improvement after deep brain stimulation in Parkinson’s disease. Acta Neurochir. 2013;155(3):497–505.CrossRefGoogle Scholar
  33. 33.
    Hamel W, Köppen JA, Alesch F, Antonini A, Barcia JA, Bergman H, et al. Targeting of the subthalamic nucleus for deep brain stimulation: a survey among Parkinson disease specialists. World Neurosurg. 2017;99:41–6.CrossRefGoogle Scholar
  34. 34.
    Accolla EA, Herrojo Ruiz M, Horn A, Schneider GH, Schmitz-Hubsch T, Draganski B, et al. Brain networks modulated by subthalamic nucleus deep brain stimulation. Brain. 2016;139(Pt 9):2503–15.CrossRefGoogle Scholar
  35. 35.
    Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.CrossRefGoogle Scholar
  36. 36.
    Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15(7–8):435–55.CrossRefGoogle Scholar
  37. 37.
    Jbabdi S, Lehman JF, Haber SN, Behrens TE. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci. 2013;33(7):3190–201.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Krishna V, Sammartino F, Yee P, Mikulis D, Walker M, Elias G, et al. Diffusion tensor imaging assessment of microstructural brainstem integrity in Chiari malformation Type I. J Neurosurg. 2016;125(5):1112–9.CrossRefGoogle Scholar
  39. 39.
    Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750–7.CrossRefGoogle Scholar
  40. 40.
    Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A. 2014;111(46):16574–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45(2):265–9.CrossRefGoogle Scholar
  42. 42.
    Taylor PA, Saad ZS. FATCAT: (an efficient) Functional and Tractographic Connectivity Analysis Toolbox. Brain Connect. 2013;3(5):523–35.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sammartino F, Krishna V, King NK, Lozano AM, Schwartz ML, Huang Y, et al. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):1217–25.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Descoteaux M. High angular resolution diffusion imaging (HARDI). In: Webster JG, editor. Wiley encyclopedia of electrical and electronics engineering. Hoboken, NJ: Wiley; 2015.Google Scholar
  45. 45.
    Yeh F-C, Verstynen TD, Wang Y, Fernández-Miranda JC, W-YIJPo T. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One. 2013;8(11):e80713.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yeh F-C, Wedeen VJ, W-YIJItomi T. Generalized ${q} $-Sampling. Imaging. 2010;29(9):1626–35.CrossRefGoogle Scholar
  47. 47.
    Sammartino F, Yeh F-C, VJNC K. Longitudinal analysis of structural changes following unilateral focused ultrasound thalamotomy. Neuroimage Clin. 2019;22:101754.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Klein JC, Barbe MT, Seifried C, Baudrexel S, Runge M, Maarouf M, et al. The tremor network targeted by successful VIM deep brain stimulation in humans. Neurology. 2012;78(11):787–95.CrossRefGoogle Scholar
  49. 49.
    Vanegas-Arroyave N, Lauro PM, Huang L, Hallett M, Horovitz SG, Zaghloul KA, et al. Tractography patterns of subthalamic nucleus deep brain stimulation. Brain. 2016;139(Pt 4):1200–10.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Oswal A, Beudel M, Zrinzo L, Limousin P, Hariz M, Foltynie T, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139(5):1482–96.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    King NK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, et al. Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg. 2017;126(5):1669–75.CrossRefGoogle Scholar
  52. 52.
    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):1745–56; discussion 56.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hammond C, Ammari R, Bioulac B, Garcia L. Latest view on the mechanism of action of deep brain stimulation. Mov Disord. 2008;23(15):2111–21.CrossRefGoogle Scholar
  54. 54.
    Wagle Shukla A, Moro E, Gunraj C, Lozano A, Hodaie M, Lang A, et al. Long-term subthalamic nucleus stimulation improves sensorimotor integration and proprioception. J Neurol Neurosurg Psychiatry. 2013;84(9):1020–8.CrossRefGoogle Scholar
  55. 55.
    Chen R, Udupa K. Measurement and modulation of plasticity of the motor system in humans using transcranial magnetic stimulation. Mot Control. 2009;13(4):442–53.CrossRefGoogle Scholar
  56. 56.
    Ogura M, Nakao N, Nakai E, Uematsu Y, Itakura T. The mechanism and effect of chronic electrical stimulation of the globus pallidus for treatment of Parkinson disease. J Neurosurg. 2004;100(6):997–1001.CrossRefGoogle Scholar
  57. 57.
    Benazzouz A, Hallett M. Mechanism of action of deep brain stimulation. Neurology. 2000;55(12 Suppl 6):S13–6.Google Scholar
  58. 58.
    Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(Pt 7):2015–26.CrossRefGoogle Scholar
  59. 59.
    Arcot Desai S, Gutekunst CA, Potter SM, Gross RE. Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus. Front Neuroeng. 2014;7:16.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14(7):693–701.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Baker KB, Montgomery EB Jr, Rezai AR, Burgess R, Luders HO. Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Mov Disord. 2002;17(5):969–83.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bahramisharif A, Mazaheri A, Levar N, Richard Schuurman P, Figee M, Denys D. Deep brain stimulation diminishes cross-frequency coupling in obsessive-compulsive disorder. Biol Psychiatry. 2016;80(7):e57–8.CrossRefGoogle Scholar
  63. 63.
    Zumsteg D, Lozano AM, Wennberg RA. Mesial temporal inhibition in a patient with deep brain stimulation of the anterior thalamus for epilepsy. Epilepsia. 2006;47(11):1958–62.CrossRefGoogle Scholar
  64. 64.
    Zumsteg D, Lozano AM, Wieser HG, Wennberg RA. Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clin Neurophysiol. 2006;117(1):192–207.CrossRefGoogle Scholar
  65. 65.
    Duchin Y, Abosch A, Yacoub E, Sapiro G, Harel N. Feasibility of using ultra-high field (7 T) MRI for clinical surgical targeting. PLoS One. 2012;7(5):e37328.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lenglet C, Abosch A, Yacoub E, De Martino F, Sapiro G, Harel N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One. 2012;7(1):e29153.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ho AL, Sussman ES, Zhang M, Pendharkar AV, Azagury DE, Bohon C, et al. Deep brain stimulation for obesity. Cureus. 2015;7(3):e259.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Sankar T, Chakravarty MM, Bescos A, Lara M, Obuchi T, Laxton AW, et al. Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul. 2015;8(3):645–54.CrossRefGoogle Scholar
  69. 69.
    McIntyre CC, Savasta M, Walter BL, Vitek JL. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol. 2004;21(1):40–50.CrossRefGoogle Scholar
  70. 70.
    de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M, Galifianakis NB, et al. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat Neurosci. 2015;18(5):779–86.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Swann NC, Hemptinne CD, Miocinovic S, Qasim S, Ostrem JL, Galifianakis NB, et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson’s disease. J Neurosurg. 2018;128(2):605–16.CrossRefPubMedGoogle Scholar
  72. 72.
    Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72(2):370–84.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wozny TA, Lipski WJ, Alhourani A, Kondylis ED, Antony A, Richardson RM. Effects of hippocampal low-frequency stimulation in idiopathic non-human primate epilepsy assessed via a remote-sensing-enabled neurostimulator. Exp Neurol. 2017;294:68–77.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz DM, Tan H, et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain. 2017;140(4):1053–67.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lipsman N, Neimat JS, Lozano AM. Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target. Neurosurgery. 2007;61(1):1–11; discussion −3.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lipsman N, Giacobbe P, Lozano AM. Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience. Handb Clin Neurol. 2013;116:245–50.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Foffani G, Priori A. Deep brain stimulation in Parkinson’s disease can mimic the 300 Hz subthalamic rhythm. Brain. 2006;129(Pt 12):e59; author reply e60.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Deniau JM, Degos B, Bosch C, Maurice N. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition. Eur J Neurosci. 2010;32(7):1080–91.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology. 2000;55(12 Suppl 6):S40–4.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Visanji NP, Kamali Sarvestani I, Creed MC, Shams Shoaei Z, Nobrega JN, Hamani C, et al. Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson’s disease. Front Cell Neurosci. 2015;9:221.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tekriwal A, Baltuch G. Deep brain stimulation: expanding applications. Neurol Med Chir. 2015;55:861.CrossRefGoogle Scholar
  82. 82.
    Jha A, Litvak V, Taulu S, Thevathasan W, Hyam JA, Foltynie T, et al. Functional connectivity of the pedunculopontine nucleus and surrounding region in Parkinson’s disease. Cereb Cortex (New York, NY: 1991). 2017;27(1):54–67.Google Scholar
  83. 83.
    Blumenfeld Z, Koop MM, Prieto TE, Shreve LA, Velisar A, Quinn EJ, et al. Sixty-hertz stimulation improves bradykinesia and amplifies subthalamic low-frequency oscillations. Mov Disord. 2017;32(1):80–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Malekmohammadi M, Herron J, Velisar A, Blumenfeld Z, Trager MH, Chizeck HJ, et al. Kinematic adaptive deep brain stimulation for resting tremor in Parkinson’s disease. Mov Disord. 2016;31(3):426–8.CrossRefPubMedGoogle Scholar
  85. 85.
    McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol. 2004;115(3):589–95.CrossRefPubMedGoogle Scholar
  86. 86.
    McIntyre CC, Grill WM, Sherman DL, Thakor NV. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol. 2004;91(4):1457–69.CrossRefPubMedGoogle Scholar
  87. 87.
    Madler B, Coenen VA. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol. 2012;33(6):1072–80.CrossRefPubMedGoogle Scholar
  88. 88.
    Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):1077–88.CrossRefGoogle Scholar
  89. 89.
    Vibhor Krishna M, Sammartino F, Rabbania Q, Changizi B, Agrawal P, Deogaonkar M, Knopp M, Young N, Rezai A. Connectivity-based approach for selection of optimal deep brain stimulation contacts: a feasibility study. Ann Clin Transl Neurol. 2019;6(7):1142–50.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Raichle ME. Two views of brain function. Trends Cogn Sci. 2010;14(4):180–90.CrossRefPubMedGoogle Scholar
  91. 91.
    Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci U S A. 2014;111(41):E4367–75.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sharan A, Rezai AR, Nyenhuis JA, Hrdlicka G, Tkach J, Baker K, et al. MR safety in patients with implanted deep brain stimulation systems (DBS). Acta Neurochir Suppl. 2003;87:141–5.CrossRefPubMedGoogle Scholar
  93. 93.
    Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR. Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson’s disease: case report. Neurosurgery. 2005;57(5):E1063; discussion E.CrossRefPubMedGoogle Scholar
  94. 94.
    Figee M, Luigjes J, Smolders R, Valencia-Alfonso CE, van Wingen G, de Kwaasteniet B, et al. Deep brain stimulation restores frontostriatal network activity in obsessive-compulsive disorder. Nat Neurosci. 2013;16(4):386–7.CrossRefPubMedGoogle Scholar
  95. 95.
    Kahan J, Urner M, Moran R, Flandin G, Marreiros A, Mancini L, et al. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity. Brain. 2014;137(Pt 4):1130–44.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Blow N. Functional neuroscience: how to get ahead in imaging. Nature. 2009;458(7240):925–8.PubMedGoogle Scholar
  97. 97.
    Min HK, Ross EK, Lee KH, Dennis K, Han SR, Jeong JH, et al. Subthalamic nucleus deep brain stimulation induces motor network BOLD activation: use of a high precision MRI guided stereotactic system for nonhuman primates. Brain Stimul. 2014;7(4):603–7.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Gibson WS, Ross EK, Han SR, Van Gompel JJ, Min HK, Lee KH. Anterior thalamic deep brain stimulation: functional activation patterns in a large animal model. Brain Stimul. 2016;9(5):770–3.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ross EK, Kim JP, Settell ML, Han SR, Blaha CD, Min HK, et al. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens. NeuroImage. 2016;128:138–48.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Sammartino F, Krishna V, Sankar T, Fisico J, Kalia SK, Hodaie M, et al. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients. J Neurosurg. 2016;127(4):892–8.CrossRefPubMedGoogle Scholar
  101. 101.
    Shih LC, LaFaver K, Lim C, Papavassiliou E, Tarsy D. Loss of benefit in VIM thalamic deep brain stimulation (DBS) for essential tremor (ET): how prevalent is it? Parkinsonism Relat Disord. 2013;19(7):676–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Houeto JL, Bejjani PB, Damier P, Staedler C, Bonnet AM, Pidoux B, et al. Failure of long-term pallidal stimulation corrected by subthalamic stimulation in PD. Neurology. 2000;55(5):728–30.CrossRefPubMedGoogle Scholar
  103. 103.
    Voytek B, Knight RT. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease. Biol Psychiatry. 2015;77(12):1089–97.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Nimmrich V, Draguhn A, Axmacher N. Neuronal network oscillations in neurodegenerative diseases. NeuroMolecular Med. 2015;17(3):270–84.CrossRefPubMedGoogle Scholar
  105. 105.
    Deisseroth K. Circuit dynamics of adaptive and maladaptive behaviour. Nature. 2014;505(7483):309–17.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.CrossRefPubMedGoogle Scholar
  107. 107.
    Bentley WJ, Li JM, Snyder AZ, Raichle ME, Snyder LH. Oxygen level and LFP in task-positive and task-negative areas: bridging BOLD fMRI and electrophysiology. Cereb Cortex. 2016;26(1):346–57.CrossRefPubMedGoogle Scholar
  108. 108.
    Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9.CrossRefPubMedGoogle Scholar
  109. 109.
    Mac Donald CL, Dikranian K, Bayly P, Holtzman D, Brody D. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci. 2007;27(44):11869–76.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Toosy AT. Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2003;74(9):1250–7.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Nicoletti G, Manners D, Novellino F, Condino F, Malucelli E, Barbiroli B, et al. Diffusion tensor MRI changes in cerebellar structures of patients with familial essential tremor. Neurology. 2010;74(12):988–94.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Krishna V, Sammartino F, Agrawal P, Changizi BK, Bourekas E, Knopp MV, Rezai A. Prospective tractography-based targeting for improved safety of focused ultrasound thalamotomy. Neurosurgery. 2019;84(1):160–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vibhor Krishna
    • 1
    Email author
  • Nicole A. Young
    • 2
  • Francesco Sammartino
    • 3
  1. 1.Departments of Neurosurgery and Neuroscience, Center for NeuromodulationThe Ohio State UniversityColumbusUSA
  2. 2.Department of NeuroscienceThe Ohio State University Wexner Medical CenterColumbusUSA
  3. 3.Center for NeuromodulationThe Ohio State UniversityColumbusUSA

Personalised recommendations