• Teresa WojtasiewiczEmail author
  • Ankur Butala
  • William Stanley Anderson


Dystonia is a multifaceted movement disorder causing a range of types of involuntary movement. Two axes are used to distinguish different subtypes of dystonia: clinical aspects (time of onset and distribution of symptoms) and etiology (e.g., primary vs. secondary). Patients who are not adequately treated with medical therapy are referred for surgical treatment, which primarily consists of deep brain stimulation. The pallidum is the most common target for treatment of dystonia and has been shown to be effective for the heterogenous group of dystonia disorders. Other deep brain stimulation targets can also be considered. Deep brain stimulation can be performed using a variety of techniques, both awake and asleep, both with and without microelectrode recording, with a frame and frameless, and with a variety of image-guided approaches. There are some special considerations for dystonia patients that should be considered when determining the appropriate surgical treatment. New techniques for ablation have reintroduced pallidotomy as a potential surgical treatment in select cases.


Dystonia Cervical dystonia Secondary dystonia Globus pallidus interna Deep brain stimulation MRI-guided surgery Pallidotomy 


  1. 1.
    Steeves TD, et al. The prevalence of primary dystonia: a systematic review and meta-analysis. Mov Disord. 2012;27(14):1789–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Albanese A. How many Dystonias? Clinical evidence. Front Neurol. 2017;8:18.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Pirio Richardson S, et al. Research priorities in limb and task-specific Dystonias. Front Neurol. 2017;8:170.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Marsden CD. Dystonia: the spectrum of the disease. Res Publ Assoc Res Nerv Ment Dis. 1976;55:351–67.PubMedGoogle Scholar
  5. 5.
    Albanese A, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28(7):863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Morgan VL, Rogers BP, Abou-Khalil B. Segmentation of the thalamus based on BOLD frequencies affected in temporal lobe epilepsy. Epilepsia. 2015;56(11):1819–27.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Morgante F, Klein C. Dystonia. Continuum (Minneap Minn). 2013;19(5 Movement Disorders):1225–41.Google Scholar
  8. 8.
    Torres-Russotto D, Perlmutter JS. Task-specific dystonias: a review. Ann N Y Acad Sci. 2008;1142:179–99.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Frucht SJ, et al. The natural history of embouchure dystonia. Mov Disord. 2001;16(5):899–906.PubMedCrossRefGoogle Scholar
  10. 10.
    Sitburana O, et al. Motor overflow and mirror dystonia. Parkinsonism Relat Disord. 2009;15(10):758–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Patel N, et al. Alleviating manoeuvres (sensory tricks) in cervical dystonia. J Neurol Neurosurg Psychiatry. 2014;85(8):882–4.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Broussolle E, et al. Early illustrations of Geste Antagoniste in cervical and generalized dystonia. Tremor Other Hyperkinet Mov (N Y). 2015;5:332.Google Scholar
  13. 13.
    Lee CN, et al. “Visual sensory trick” in patient with cervical dystonia. Neurol Sci. 2012;33(3):665–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Stojanovic M, et al. Improvement in laryngeal dystonia with background noise. Mov Disord. 1997;12(2):249–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Asmus F, et al. Reverse sensory geste in cervical dystonia. Mov Disord. 2009;24(2):297–300.PubMedCrossRefGoogle Scholar
  16. 16.
    Greene PE, Bressman S. Exteroceptive and interoceptive stimuli in dystonia. Mov Disord. 1998;13(3):549–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Ozelius L, et al. Human gene for torsion dystonia located on chromosome 9q32-q34. Neuron. 1989;2(5):1427–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Klein C. Genetics in dystonia. Parkinsonism Relat Disord. 2014;20(Suppl 1):S137–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Phukan J, et al. Primary dystonia and dystonia-plus syndromes: clinical characteristics, diagnosis, and pathogenesis. Lancet Neurol. 2011;10(12):1074–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Hawker K, Lang AE. Hypoxic-ischemic damage of the basal ganglia. Case reports and a review of the literature. Mov Disord. 1990;5(3):219–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord. 1994;9(5):493–507.PubMedCrossRefGoogle Scholar
  22. 22.
    Burke RE, Fahn S, Gold AP. Delayed-onset dystonia in patients with “static” encephalopathy. J Neurol Neurosurg Psychiatry. 1980;43(9):789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hilaire MHS, et al. Delayed-onset dystonia due to perinatal or early childhood asphyxia. Neurology. 1991;41(2, Part 1):216.CrossRefGoogle Scholar
  24. 24.
    Zadori D, et al. Drug-induced movement disorders. Expert Opin Drug Saf. 2015;14(6):877–90.PubMedCrossRefGoogle Scholar
  25. 25.
    Jankovic J, et al. Relationship between various clinical outcome assessments in patients with blepharospasm. Mov Disord. 2009;24(3):407–13.PubMedCrossRefGoogle Scholar
  26. 26.
    Consky E, Lang A. Clinical assessments of patients with cervical dystonia. In: Jankovic J, Hallett M, editors. Therapy with botulinum toxin. New York: Marcel Dekker; 1994. p. 211–37.Google Scholar
  27. 27.
    Muller J, et al. Craniocervical dystonia questionnaire (CDQ-24): development and validation of a disease-specific quality of life instrument. J Neurol Neurosurg Psychiatry. 2004;75(5):749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Comella CL, et al. Rating scales for dystonia: a multicenter assessment. Mov Disord. 2003;18(3):303–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Krystkowiak P, et al. Reliability of the Burke-Fahn-Marsden scale in a multicenter trial for dystonia. Mov Disord. 2007;22(5):685–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Burke RE, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35(1):73–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Jankovic J. Medical treatment of dystonia. Mov Disord. 2013;28(7):1001–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Albanese A, et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur J Neurol. 2011;18(1):5–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Delnooz CC, et al. Paramedical treatment in primary dystonia: a systematic review. Mov Disord. 2009;24(15):2187–98.PubMedCrossRefGoogle Scholar
  34. 34.
    De Pauw J, et al. The effectiveness of physiotherapy for cervical dystonia: a systematic literature review. J Neurol. 2014;261(10):1857–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Tassorelli C, et al. Botulinum toxin and neuromotor rehabilitation: an integrated approach to idiopathic cervical dystonia. Mov Disord. 2006;21(12):2240–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Nygaard TG, Marsden CD, Duvoisin RC. Dopa-responsive dystonia. Adv Neurol. 1988;50:377–84.PubMedGoogle Scholar
  37. 37.
    Segawa M, et al. Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol. 1976;14:215–33.PubMedGoogle Scholar
  38. 38.
    Karp BI, et al. An open trial of clozapine for dystonia. Mov Disord. 1999;14(4):652–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Jankovic J. Tardive syndromes and other drug-induced movement disorders. Clin Neuropharmacol. 1995;18(3):197–214.PubMedCrossRefGoogle Scholar
  40. 40.
    Shapleske J, Mickay AP, McKenna PJ. Successful treatment of tardive dystonia with clozapine and clonazepam. Br J Psychiatry. 1996;168(4):516–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Simpson GM. The treatment of tardive dyskinesia and tardive dystonia. J Clin Psychiatry. 2000;61(Suppl 4):39–44.PubMedGoogle Scholar
  42. 42.
    Jankovic J, Beach J. Long-term effects of tetrabenazine in hyperkinetic movement disorders. Neurology. 1997;48(2):358–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Chen JJ, et al. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther. 2012;34(7):1487–504.PubMedCrossRefGoogle Scholar
  44. 44.
    Jankovic J. Treatment of hyperkinetic movement disorders with tetrabenazine: a double-blind crossover study. Ann Neurol. 1982;11(1):41–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Jankovic J, Orman J. Tetrabenazine therapy of dystonia, chorea, tics, and other dyskinesias. Neurology. 1988;38(3):391–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Boyer WF, Bakalar NH, Lake CR. Anticholinergic prophylaxis of acute haloperidol-induced acute dystonic reactions. J Clin Psychopharmacol. 1987;7(3):164–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Holloman LC, Marder SR. Management of acute extrapyramidal effects induced by antipsychotic drugs. Am J Health Syst Pharm. 1997;54(21):2461–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Stern TA, Anderson WH. Benztropine prophylaxis of dystonic reactions. Psychopharmacology (Berl). 1979;61(3):261–2.CrossRefGoogle Scholar
  49. 49.
    Fahn S. High dosage anticholinergic therapy in dystonia. Neurology. 1983;33(10):1255–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Albanese A, et al. A systematic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report of an EFNS/MDS-ES Task Force. Eur J Neurol. 2006;13(5):433–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Burke RE, Fahn S, Marsden CD. Torsion dystonia: a double-blind, prospective trial of high-dosage trihexyphenidyl. Neurology. 1986;36(2):160–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Sanger TD, et al. Prospective open-label clinical trial of trihexyphenidyl in children with secondary dystonia due to cerebral palsy. J Child Neurol. 2007;22(5):530–7.PubMedCrossRefGoogle Scholar
  53. 53.
    van den Heuvel CNAM, et al. The symptomatic treatment of acquired dystonia: a systematic review. Mov Disord Clin Pract. 2016;3(6):548–58.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brans JW, et al. Botulinum toxin versus trihexyphenidyl in cervical dystonia: a prospective, randomized, double-blind controlled trial. Neurology. 1996;46(4):1066–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Hallett M, et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon. 2013;67:94–114.PubMedCrossRefGoogle Scholar
  56. 56.
    Simpson DM, et al. Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache: report of the guideline development Subcommittee of the American Academy of Neurology. Neurology. 2016;86(19):1818–26.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Simpson DM, et al. Assessment: botulinum neurotoxin for the treatment of movement disorders (an evidence-based review): report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1699–706.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kruisdijk JJ, et al. Botulinum toxin for writer’s cramp: a randomised, placebo-controlled trial and 1-year follow-up. J Neurol Neurosurg Psychiatry. 2007;78(3):264–70.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bentivoglio AR, et al. Fifteen-year experience in treating blepharospasm with Botox or Dysport: same toxin, two drugs. Neurotox Res. 2009;15(3):224–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Truong D, et al. Efficacy and safety of botulinum type A toxin (Dysport) in cervical dystonia: results of the first US randomized, double-blind, placebo-controlled study. Mov Disord. 2005;20(7):783–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Albavera-Hernandez C, Rodriguez JM, Idrovo AJ. Safety of botulinum toxin type A among children with spasticity secondary to cerebral palsy: a systematic review of randomized clinical trials. Clin Rehabil. 2009;23(5):394–407.PubMedCrossRefGoogle Scholar
  62. 62.
    Pappert EJ, Germanson T. And G. Myobloc/Neurobloc European Cervical Dystonia Study, botulinum toxin type B vs. type A in toxin-naive patients with cervical dystonia: randomized, double-blind, noninferiority trial. Mov Disord. 2008;23(4):510–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Duarte GS, et al. Botulinum toxin type A versus botulinum toxin type B for cervical dystonia. Cochrane Database Syst Rev. 2016;10:CD004314.PubMedGoogle Scholar
  64. 64.
    Cooper IS. Clinical and physiologic implications of thalamic surgery for disorders of sensory communication. 2. Intention tremor, dystonia, Wilson’s disease and torticollis. J Neurol Sci. 1965;2(6):520–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Cooper IS. 20-year followup study of the neurosurgical treatment of dystonia musculorum deformans. Adv Neurol. 1976;14:423–52.PubMedGoogle Scholar
  66. 66.
    Gildenberg PL. Evolution of basal ganglia surgery for movement disorders. Stereotact Funct Neurosurg. 2006;84(4):131–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Cif L, Hariz M. Seventy years with the globus pallidus: Pallidal surgery for movement disorders between 1947 and 2017. Mov Disord. 2017;32:972.PubMedCrossRefGoogle Scholar
  68. 68.
    Pretto TE, et al. A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. J Neurosurg. 2008;109(3):405–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Damier P, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64(2):170–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Kiss ZH, et al. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain. 2007;130(Pt 11):2879–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Diamond A, et al. Globus pallidus deep brain stimulation in dystonia. Mov Disord. 2006;21(5):692–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Vidailhet M, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352(5):459–67.PubMedCrossRefGoogle Scholar
  73. 73.
    Kupsch A, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355(19):1978–90.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Moro E, et al. Efficacy of pallidal stimulation in isolated dystonia: a systematic review and meta-analysis. Eur J Neurol. 2017;24(4):552–60.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Romito LM, et al. Fixed dystonia unresponsive to pallidal stimulation improved by motor cortex stimulation. Neurology. 2007;68(11):875–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Sun B, et al. Subthalamic nucleus stimulation for primary dystonia and tardive dystonia. Acta Neurochir Suppl. 2007;97(Pt 2):207–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Woehrle JC, et al. Chronic deep brain stimulation for segmental dystonia. Stereotact Funct Neurosurg. 2009;87(6):379–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Racette BA, et al. Thalamic stimulation for primary writing tremor. J Neurol. 2001;248(5):380–2.PubMedCrossRefGoogle Scholar
  79. 79.
    Minguez-Castellanos A, et al. Primary writing tremor treated by chronic thalamic stimulation. Mov Disord. 1999;14(6):1030–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Kuncel AM, et al. Myoclonus and tremor response to thalamic deep brain stimulation parameters in a patient with inherited myoclonus-dystonia syndrome. Clin Neurol Neurosurg. 2009;111(3):303–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Hedera P, et al. Surgical targets for dystonic tremor: considerations between the globus pallidus and ventral intermediate thalamic nucleus. Parkinsonism Relat Disord. 2013;19(7):684–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Morishita T, et al. Should we consider vim thalamic deep brain stimulation for select cases of severe refractory dystonic tremor. Stereotact Funct Neurosurg. 2010;88(2):98–104.PubMedCrossRefGoogle Scholar
  83. 83.
    Fasano A, Bove F, Lang AE. The treatment of dystonic tremor: a systematic review. J Neurol Neurosurg Psychiatry. 2014;85(7):759–69.PubMedCrossRefGoogle Scholar
  84. 84.
    Vercueil L, et al. Deep brain stimulation in the treatment of severe dystonia. J Neurol. 2001;248(8):695–700.PubMedCrossRefGoogle Scholar
  85. 85.
    Ostrem JL, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology. 2017;88(1):25–35.CrossRefGoogle Scholar
  86. 86.
    Kramer DR, et al. Best surgical practices: a stepwise approach to the University of Pennsylvania deep brain stimulation protocol. Neurosurg Focus. 2010;29(2):E3.PubMedCrossRefGoogle Scholar
  87. 87.
    Machado A, et al. Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov Disord. 2006;21(Suppl 14):S247–58.PubMedCrossRefGoogle Scholar
  88. 88.
    Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. 2007;85(5):235–42.CrossRefGoogle Scholar
  89. 89.
    Bot M, et al. Analysis of stereotactic accuracy in patients undergoing deep brain stimulation using Nexframe and the Leksell frame. Stereotact Funct Neurosurg. 2015;93(5):316–25.PubMedCrossRefGoogle Scholar
  90. 90.
    Henderson JM, et al. The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery. Comput Aided Surg. 2004;9(4):155–60.CrossRefGoogle Scholar
  91. 91.
    Cheng CY, et al. Deep brain stimulation for Parkinson’s disease using frameless technology. Br J Neurosurg. 2014;28(3):383–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Maciunas RJ, et al. An independent application accuracy evaluation of stereotactic frame systems. Stereotact Funct Neurosurg. 1992;58(1–4):103–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Hariz MI. Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg. 2002;78(3–4):146–57.PubMedCrossRefGoogle Scholar
  94. 94.
    Kocabicak E, et al. Is there still need for microelectrode recording now the subthalamic nucleus can be well visualized with high field and ultrahigh MR imaging? Front Integr Neurosci. 2015;9:46.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chen T, Mirzadeh Z, Ponce FA. “Asleep” deep brain stimulation surgery: a critical review of the literature. World Neurosurg. 2017;105:191–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Kochanski RB, Sani S. Awake versus asleep deep brain stimulation surgery: technical considerations and critical review of the literature. Brain Sci. 2018;8(1):pii: E17.CrossRefGoogle Scholar
  97. 97.
    Chen T, et al. Clinical outcomes following awake and asleep deep brain stimulation for Parkinson disease. J Neurosurg. 2018;130(1):109–20. p. 1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Schaltenbrand G, Walker AE. Stereotaxy of the human brain. New York: Thieme-Stratton; 1982.Google Scholar
  99. 99.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas for the human brain: 3-D proportional system: an approach to cerebral imaging. New York: Thieme; 1988.Google Scholar
  100. 100.
    O’Gorman RL, et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130–6.CrossRefGoogle Scholar
  101. 101.
    Vayssiere N, et al. Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg. 2002;96(4):673–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Anderson WS, et al. Applying microelectrode recordings in neurosurgery. Contemp Neurosurg. 2010;32(3):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Anderson WS, Lenz FA. Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neuro. 2006;2(6):310–20.CrossRefGoogle Scholar
  104. 104.
    Starr PA, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus. 2004;17(1):E4.PubMedCrossRefGoogle Scholar
  105. 105.
    Jitkritsadakul O, et al. Systematic review of hardware-related complications of deep brain stimulation: do new indications pose an increased risk? Brain Stimul. 2017;10(5):967–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Bruggemann N, et al. Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology. 2015;84(9):895–903.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Romito LM, et al. Pallidal stimulation for acquired dystonia due to cerebral palsy: beyond 5 years. Eur J Neurol. 2014;22(3):426–e32.PubMedCrossRefGoogle Scholar
  108. 108.
    Beric A, et al. Complications of deep brain stimulation surgery. Stereotact Funct Neurosurg. 2001;77(1–4):73–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Burdick AP, et al. Relationship between higher rates of adverse events in deep brain stimulation using standardized prospective recording and patient outcomes. Neurosurg Focus. 2010;29(2):E4.PubMedCrossRefGoogle Scholar
  110. 110.
    Chen T, et al. Complication rates, lengths of stay, and readmission rates in “awake” and “asleep” deep brain simulation. J Neurosurg. 2017;127(2):360–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Constantoyannis C, et al. Reducing hardware-related complications of deep brain stimulation. Can J Neurol Sci. 2005;32(2):194–200.PubMedCrossRefGoogle Scholar
  112. 112.
    Fenoy AJ, Simpson RK Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J Neurosurg. 2014;120(1):132–9.PubMedCrossRefGoogle Scholar
  113. 113.
    Isaias IU, Alterman RL, Tagliati M. Deep brain stimulation for primary generalized dystonia: long-term outcomes. Arch Neurol. 2009;66(4):465–70.PubMedCrossRefGoogle Scholar
  114. 114.
    Kaminska M, et al. Complications of Deep Brain Stimulation (DBS) for dystonia in children – the challenges and 10 year experience in a large paediatric cohort. Eur J Paediatr Neurol. 2017;21(1):168–75.PubMedCrossRefGoogle Scholar
  115. 115.
    Patel DM, et al. Adverse events associated with deep brain stimulation for movement disorders: analysis of 510 consecutive cases. Neurosurgery. 2015;11(Suppl 2):190–9.PubMedGoogle Scholar
  116. 116.
    Sillay KA, Larson PS, Starr PA. Deep brain stimulator hardware-related infections: incidence and management in a large series. Neurosurgery. 2008;62(2):360–6. discussion 366-7PubMedCrossRefGoogle Scholar
  117. 117.
    Zrinzo L, et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2011;116(1):84–94.PubMedCrossRefGoogle Scholar
  118. 118.
    Buhmann C, et al. Adverse events in deep brain stimulation: a retrospective long-term analysis of neurological, psychiatric and other occurrences. PLoS One. 2017;12(7):e0178984.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Gorgulho A, et al. Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg. 2005;102(5):888–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Park CK, et al. Analysis of delayed intracerebral hemorrhage associated with deep brain stimulation surgery. World Neurosurg. 2017;104:537–44.PubMedCrossRefGoogle Scholar
  121. 121.
    Binder DK, Rau GM, Starr PA. Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery. 2005;56(4):722–32. discussion 722-32CrossRefGoogle Scholar
  122. 122.
    Xiaowu H, et al. Risks of intracranial hemorrhage in patients with Parkinson’s disease receiving deep brain stimulation and ablation. Parkinsonism Relat Disord. 2010;16(2):96–100.PubMedCrossRefGoogle Scholar
  123. 123.
    Umemura A, et al. Deep brain stimulation for movement disorders: morbidity and mortality in 109 patients. J Neurosurg. 2003;98(4):779–84.PubMedCrossRefGoogle Scholar
  124. 124.
    Obeso JA, et al. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001;345(13):956–63.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Allen NM, et al. Status dystonicus: a practice guide. Dev Med Child Neurol. 2014;56(2):105–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Termsarasab P, Frucht SJ. Dystonic storm: a practical clinical and video review. J Clin Mov Disord. 2017;4(10):10.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Cheung T, et al. Status dystonicus following deep brain stimulation surgery in DYT1 dystonia patients (P01.227). Neurology. 2012;78(1 Supplement):P01.227.Google Scholar
  128. 128.
    Kenney C, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J Neurosurg. 2007;106(4):621–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Meoni S, et al. Pallidal deep brain stimulation for dystonia: a long term study. J Neurol Neurosurg Psychiatry. 2017;88(11):960–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Panov F, et al. Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery. 2013;73(1):86–93; discussion 93.PubMedCrossRefGoogle Scholar
  131. 131.
    Sobstyl M, et al. Long-term outcomes of bilateral pallidal stimulation for primary generalised dystonia. Clin Neurol Neurosurg. 2014;126:82–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Tagliati M, et al. Long-term management of DBS in dystonia: response to stimulation, adverse events, battery changes, and special considerations. Mov Disord. 2011;26 Suppl 1(26):S54–62.PubMedCrossRefGoogle Scholar
  133. 133.
    Piacentino M, Pilleri M, Bartolomei L. Hardware-related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single-center procedures in the first year after implantation. Acta Neurochir (Wien). 2011;153(12):2337–41.CrossRefGoogle Scholar
  134. 134.
    Fenoy AJ, Simpson RK Jr. Management of device-related wound complications in deep brain stimulation surgery. J Neurosurg. 2012;116(6):1324–32.PubMedCrossRefGoogle Scholar
  135. 135.
    Bhatia S, et al. Infections and hardware salvage after deep brain stimulation surgery: a single-center study and review of the literature. Stereotact Funct Neurosurg. 2010;88(3):147–55.PubMedCrossRefGoogle Scholar
  136. 136.
    Fernandez FS, et al. Lead fractures in deep brain stimulation during long-term follow-up. Parkinsons Dis. 2009;2010(409356):409356.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Krauss JK, et al. Pallidal deep brain stimulation in patients with cervical dystonia and severe cervical dyskinesias with cervical myelopathy. J Neurol Neurosurg Psychiatry. 2002;72(2):249–56.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Yianni J, et al. Increased risk of lead fracture and migration in dystonia compared with other movement disorders following deep brain stimulation. J Clin Neurosci. 2004;11(3):243–5.PubMedCrossRefGoogle Scholar
  139. 139.
    Jahanshahi M, Czernecki V, Zurowski AM. Neuropsychological, neuropsychiatric, and quality of life issues in DBS for dystonia. Mov Disord. 2011;26 Suppl 1(26):S63–78.PubMedCrossRefGoogle Scholar
  140. 140.
    Halbig TD, et al. Pallidal stimulation in dystonia: effects on cognition, mood, and quality of life. J Neurol Neurosurg Psychiatry. 2005;76(12):1713–6.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    de Gusmao CM, Pollak LE, Sharma N. Neuropsychological and psychiatric outcome of GPi-deep brain stimulation in dystonia. Brain Stimul. 2017;10(5):994–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Volkmann J, et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: a randomised, sham-controlled trial. Lancet Neurol. 2014;13(9):875–84.PubMedCrossRefGoogle Scholar
  143. 143.
    Schrader C, et al. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. 2011;77(5):483–8.PubMedCrossRefGoogle Scholar
  144. 144.
    Blahak C, et al. Micrographia induced by pallidal DBS for segmental dystonia: a subtle sign of hypokinesia? J Neural Transm (Vienna). 2011;118(4):549–53.CrossRefGoogle Scholar
  145. 145.
    Berman BD, et al. Induction of bradykinesia with pallidal deep brain stimulation in patients with cranial-cervical dystonia. Stereotact Funct Neurosurg. 2009;87(1):37–44.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Huebl J, et al. Bradykinesia induced by frequency-specific pallidal stimulation in patients with cervical and segmental dystonia. Parkinsonism Relat Disord. 2015;21(7):800–3.PubMedCrossRefGoogle Scholar
  147. 147.
    Yianni J, et al. Post-operative progress of dystonia patients following globus pallidus internus deep brain stimulation. Eur J Neurol. 2003;10(3):239–47.PubMedCrossRefGoogle Scholar
  148. 148.
    Kupsch A, et al. The effects of frequency in pallidal deep brain stimulation for primary dystonia. J Neurol. 2003;250(10):1201–5.PubMedCrossRefGoogle Scholar
  149. 149.
    Katayama Y, et al. Chronic stimulation of the globus pallidus internus for control of primary generalized dystonia. Acta Neurochir Suppl. 2003;87:125–8.PubMedGoogle Scholar
  150. 150.
    Coubes P, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101(2):189–94.PubMedCrossRefGoogle Scholar
  151. 151.
    Vayssiere N, et al. Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg. 2004;101(2):181–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Eltahawy HA, et al. Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery. 2004;54(3):613–9; discussion 619–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Valldeoriola F, et al. Efficacy and safety of pallidal stimulation in primary dystonia: results of the Spanish multicentric study. J Neurol Neurosurg Psychiatry. 2010;81(1):65–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Vidailhet M, et al. Bilateral, pallidal, deep-brain stimulation in primary generalised dystonia: a prospective 3 year follow-up study. Lancet Neurol. 2007;6(3):223–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Loher TJ, et al. Deep brain stimulation for dystonia: outcome at long-term follow-up. J Neurol. 2008;255(6):881–4.PubMedCrossRefGoogle Scholar
  156. 156.
    Volkmann J, et al. Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial. Lancet Neurol. 2012;11(12):1029–38.PubMedCrossRefGoogle Scholar
  157. 157.
    Cacciola F, et al. Bilateral deep brain stimulation for cervical dystonia: long-term outcome in a series of 10 patients. Neurosurgery. 2010;67(4):957–63.PubMedCrossRefGoogle Scholar
  158. 158.
    Hung SW, et al. Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology. 2007;68(6):457–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Krauss JK, et al. Bilateral stimulation of globus pallidus internus for treatment of cervical dystonia. Lancet. 1999;354(9181):837–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Moro E, et al. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur J Neurol. 2009;16(4):506–12.PubMedCrossRefGoogle Scholar
  161. 161.
    Yamada K, et al. Long disease duration interferes with therapeutic effect of globus pallidus internus pallidal stimulation in primary cervical dystonia. Neuromodulation. 2013;16(3):219–25; discussion 225.PubMedCrossRefGoogle Scholar
  162. 162.
    Walsh RA, et al. Bilateral pallidal stimulation in cervical dystonia: blinded evidence of benefit beyond 5 years. Brain. 2013;136(Pt 3):761–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Inoue N, et al. Long-term suppression of Meige syndrome after pallidal stimulation: a 10-year follow-up study. Mov Disord. 2010;25(11):1756–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Sako W, et al. Bilateral pallidal deep brain stimulation in primary Meige syndrome. Parkinsonism Relat Disord. 2011;17(2):123–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Lyons MK, et al. Long-term follow-up of deep brain stimulation for Meige syndrome. Neurosurg Focus. 2010;29(2):E5.PubMedCrossRefGoogle Scholar
  166. 166.
    Reese R, et al. Long-term clinical outcome in meige syndrome treated with internal pallidum deep brain stimulation. Mov Disord. 2011;26(4):691–8.PubMedCrossRefGoogle Scholar
  167. 167.
    Ostrem JL, et al. Pallidal deep brain stimulation in patients with cranial-cervical dystonia (Meige syndrome). Mov Disord. 2007;22(13):1885–91.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang X, et al. Deep brain stimulation for Craniocervical dystonia (Meige syndrome): a report of four patients and a literature-based analysis of its treatment effects. Neuromodulation. 2016;19(8):818–23.PubMedCrossRefGoogle Scholar
  169. 169.
    Vidailhet M, et al. Deep brain stimulation for dystonia. J Neurol Neurosurg Psychiatry. 2013;84(9):1029–42.PubMedCrossRefGoogle Scholar
  170. 170.
    Chang EF, et al. Long-term benefit sustained after bilateral pallidal deep brain stimulation in patients with refractory tardive dystonia. Stereotact Funct Neurosurg. 2010;88(5):304–10.PubMedCrossRefGoogle Scholar
  171. 171.
    Sako W, et al. Bilateral deep brain stimulation of the globus pallidus internus in tardive dystonia. Mov Disord. 2008;23(13):1929–31.PubMedCrossRefGoogle Scholar
  172. 172.
    Trottenberg T, et al. Treatment of severe tardive dystonia with pallidal deep brain stimulation. Neurology. 2005;64(2):344–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Gruber D, et al. Long-term effects of pallidal deep brain stimulation in tardive dystonia. Neurology. 2009;73(1):53–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Capelle HH, et al. Chronic deep brain stimulation in patients with tardive dystonia without a history of major psychosis. Mov Disord. 2010;25(10):1477–81.PubMedCrossRefGoogle Scholar
  175. 175.
    Spindler MA, et al. Globus pallidus interna deep brain stimulation for tardive dyskinesia: case report and review of the literature. Parkinsonism Relat Disord. 2013;19(2):141–7.PubMedCrossRefGoogle Scholar
  176. 176.
    Marks WA, et al. Dystonia due to cerebral palsy responds to deep brain stimulation of the globus pallidus internus. Mov Disord. 2011;26(9):1748–51.PubMedCrossRefGoogle Scholar
  177. 177.
    Vidailhet M, et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol. 2009;8(8):709–17.PubMedCrossRefGoogle Scholar
  178. 178.
    Gimeno H, et al. Beyond the Burke-Fahn-Marsden dystonia rating scale: deep brain stimulation in childhood secondary dystonia. Eur J Paediatr Neurol. 2012;16(5):501–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Koy A, et al. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis. Mov Disord. 2013;28(5):647–54.PubMedCrossRefGoogle Scholar
  180. 180.
    Kupsch A, et al. Early postoperative management of DBS in dystonia: programming, response to stimulation, adverse events, medication changes, evaluations, and troubleshooting. Mov Disord. 2011;26 Suppl 1:S37–53.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Picillo M, et al. Programming deep brain stimulation for tremor and dystonia: the Toronto Western hospital algorithms. Brain Stimul. 2016;9(3):438–52.PubMedCrossRefGoogle Scholar
  182. 182.
    Isaias IU, et al. Managing dystonia patients treated with deep brain stimulation. In Marks Jr. WJ, editor. Deep brain stimulation management. Cambridge University Press; 2015. p. 108–17.Google Scholar
  183. 183.
    Beaulieu-Boire I, Fasano A. Current or voltage? Another Shakespearean dilemma. Eur J Neurol. 2015;22(6):887–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Bronstein JM, et al. The rationale driving the evolution of deep brain stimulation to constant-current devices. Neuromodulation. 2015;18(2):85–8; discussion 88–9.PubMedCrossRefGoogle Scholar
  185. 185.
    Pinsker MO, et al. Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir (Wien). 2009;151(7):751–8.CrossRefGoogle Scholar
  186. 186.
    Cheung T, et al. Defining a therapeutic target for pallidal deep brain stimulation for dystonia. Ann Neurol. 2014;76(1):22–30.PubMedCrossRefGoogle Scholar
  187. 187.
    Hamani C, et al. Location of active contacts in patients with primary dystonia treated with globus pallidus deep brain stimulation. Neurosurgery. 2008;62(3 Suppl 1):217–23; discussion 223–5.PubMedGoogle Scholar
  188. 188.
    Coubes P, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. Journal of neurosurgery. 2004;101(2):189–94.PubMedCrossRefGoogle Scholar
  189. 189.
    Vercueil L, et al. Effects of pulse width variations in pallidal stimulation for primary generalized dystonia. J Neurol. 2007;254(11):1533–7.PubMedCrossRefGoogle Scholar
  190. 190.
    Bereznai B, et al. Chronic high-frequency globus pallidus internus stimulation in different types of dystonia: a clinical, video, and MRI report of six patients presenting with segmental, cervical, and generalized dystonia. Mov Disord. 2002;17(1):138–44.PubMedCrossRefGoogle Scholar
  191. 191.
    Liu LD, et al. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J Neurophysiol. 2012;108(1):5–17.PubMedCrossRefGoogle Scholar
  192. 192.
    Almeida L, et al. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: the BIP dystonia study. Mov Disord. 2017;32(4):615–8.PubMedCrossRefGoogle Scholar
  193. 193.
    Cagnan H, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain. 2017;140(1):132–45.PubMedCrossRefGoogle Scholar
  194. 194.
    Bologna M, Berardelli A. Cerebellum: an explanation for dystonia? Cerebellum Ataxias. 2017;4:6.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Calderon DP, et al. The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci. 2011;14(3):357–65.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Chen CH, et al. Short latency cerebellar modulation of the basal ganglia. Nat Neurosci. 2014;17(12):1767–75.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Shakkottai VG, et al. Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum. 2017;16(2):577–94.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Shaikh AG, et al. Cervical dystonia: a neural integrator disorder. Brain. 2016;139(Pt 10):2590–9.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Bertrand C, et al. Technical aspects of selective peripheral denervation for spasmodic torticollis. Appl Neurophysiol. 1982;45:326–30.PubMedGoogle Scholar
  200. 200.
    Bertrand C, et al. Selective peripheral denervation in 111 cases of spasmodic torticollis: rationale and results. Adv Neurol. 1988;50:637–43.PubMedGoogle Scholar
  201. 201.
    Anderson WS, et al. Selective denervation of the levator scapulae muscle: an amendment to the Bertrand procedure for the treatment of spasmodic torticollis. J Neurosurg. 2008;108(4):757.PubMedCrossRefGoogle Scholar
  202. 202.
    Ford B, et al. Outcome of selective ramisectomy for botulinum toxin resistant torticollis. J Neurol Neurosurg Psychiatry. 1998;65(4):472–8.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Münchau A, et al. Prospective study of selective peripheral denervation for botulinum-toxin resistant patients with cervical dystonia. Brain. 2001;124(4):769–83.PubMedCrossRefGoogle Scholar
  204. 204.
    Cohen-Gadol AA, et al. Selective peripheral denervation for the treatment of intractable spasmodic torticollis: experience with 168 patients at the Mayo Clinic. J Neurosurg. 2003;98(6):1247–54.PubMedCrossRefGoogle Scholar
  205. 205.
    Bergenheim AT, et al. Selective peripheral denervation for cervical dystonia: long-term follow-up. J Neurol Neurosurg Psychiatry. 2015;86(12):1307–13.PubMedCrossRefGoogle Scholar
  206. 206.
    Contarino MF, et al. Selective peripheral denervation: comparison with pallidal stimulation and literature review. J Neurol. 2014;261(2):300–8.PubMedCrossRefGoogle Scholar
  207. 207.
    Meyer CH. Outcome of selective peripheral denervation for cervical dystonia. Stereotact Funct Neurosurg. 2001;77(1–4):44–7.PubMedCrossRefGoogle Scholar
  208. 208.
    Braun V, Richter HP. Selective peripheral denervation for spasmodic torticollis: 13-year experience with 155 patients. J Neurosurg. 2002;97(2 Suppl):207–12.PubMedGoogle Scholar
  209. 209.
    Ravindran K, et al. Deep brain stimulation versus peripheral denervation for cervical dystonia: a systematic review and meta-analysis. World Neurosurg. 2018;122:e940–6.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Laitinen LV. Leksell’s unpublished pallidotomies of 1958-1962. Stereotact Funct Neurosurg. 2000;74(1):1–10.PubMedCrossRefGoogle Scholar
  211. 211.
    Steiner L, et al. Gammathalamotomy in intractable pain. Acta Neurochir (Wien). 1980;52(3–4):173–84.CrossRefGoogle Scholar
  212. 212.
    Iacono RP, et al. Simultaneous bilateral pallidoansotomy for idiopathic dystonia musculorum deformans. Pediatric Neurology. 1996;14(2):145–8.PubMedCrossRefGoogle Scholar
  213. 213.
    Lozano AM, et al. Globus pallidus internus pallidotomy for generalized dystonia. Movement Disorders. 1997;12(6):865–70.PubMedCrossRefGoogle Scholar
  214. 214.
    Gross RE. What happened to posteroventral pallidotomy for Parkinson’s disease and dystonia? Neurotherapeutics. 2008;5(2):281–93.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Teive HAG, et al. Bilateral pallidotomy for generalized dystonia. Arquivos de Neuro-Psiquiatria. 2001;59:353–7.PubMedCrossRefGoogle Scholar
  216. 216.
    Ondo WG, et al. Pallidotomy for generalized dystonia. Movement Disorders. 1998;13(4):693–8.PubMedCrossRefGoogle Scholar
  217. 217.
    Takeda N, et al. Radiofrequency lesioning through deep brain stimulation electrodes in patients with generalized dystonia. World Neurosurg. 2018;115:220–4.PubMedCrossRefGoogle Scholar
  218. 218.
    Frighetto L, et al. Stereotactic radiosurgery for movement disorders. Surg Neurol Int. 2012;3(Suppl 1):S10–6.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Kondziolka D, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for epilepsy and functional disorders. Neurosurg Clin N Am. 2013;24(4):623–32.PubMedCrossRefGoogle Scholar
  220. 220.
    Niranjan A, et al. Stereotactic radiosurgery for essential tremor: retrospective analysis of a 19-year experience. Mov Disord. 2017;32(5):769–77.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Gross RE, Stern MA. Magnetic resonance-guided stereotactic laser pallidotomy for dystonia. Mov Disord. 2018;33:1502.PubMedCrossRefGoogle Scholar
  222. 222.
    Elias WJ, et al. A randomized trial of focused ultrasound Thalamotomy for essential tremor. N Engl J Med. 2016;375(8):730–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Teresa Wojtasiewicz
    • 1
    Email author
  • Ankur Butala
    • 2
  • William Stanley Anderson
    • 1
  1. 1.Department of Neurological SurgeryJohns Hopkins UniversityBaltimoreUSA
  2. 2.Departments of Neurology, Psychiatry & Behavioral SciencesJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations