Cloud-Based Stereotactic and Functional Neurosurgery and Registries

  • Pierre-François D’HaeseEmail author


As healthcare evolves and increasingly utilizes electronic records, there is an increasing demand and desire to centralize data to learn from the vast amounts of clinical experience across centers. Still, one of the most significant challenges remains how to effectively gather and integrate such data into registries, using a method that ensures quality, reliability, and privacy. This challenge can create significant overhead and burden. In this chapter, we provide an in-depth review of the development of a registry focused on stereotactic and functional neurosurgery, reviewing key elements, needs, and challenges that require consideration for all such registries. Such developments, registries, and integrations are critical to amassing sufficiently experience and knowledge across centers to significant advance the field.


Clinical research Cloud-based Normalization Atlas Multicenter collaboration Database 



Dr. D’Haese is the cofounder and shareholders of Neurotargeting, LLC. Neurotargeting has acquired technology developed at Vanderbilt University by Dr. D’Haese related to the management and processing of clinical data generated from neuromodulation. Neurotargeting’s role was to create the legal and commercial framework for such a framework to be sustainable. While this chapter is not intended to promote any concept related to Neurotargeting, some of the discussion will mention Vanderbilt University and Neurotargeting data framework called CranialCloud.


  1. 1.
    D’Haese P-F, Pallavaram S, Kao C, Neimat JS, Konrad PE, Dawant BM. Effect of data normalization on the creation of neuro probabilistic atlases. Stereotact Funct Neurosurg. 2013;91(3):148–52.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    D’Haese P-F, et al. CranialVault and its CRAVE tools: a clinical computer assistance system for Deep Brain Stimulation (DBS) therapy. Med Image Anal. 2012;16(3):744–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Tourdias T, et al. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. NeuroImage. 2014;84:534–45.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    D’Haese P-F, Konrad PE, Pallavaram S, Li R, Prasad P, Rodriguez WJ, Dawant BM. CranialCloud: a cloud-based architecture to support trans-institutional collaborative efforts in neuro-degenerative disorders. Int J Comput Assist Radiol Surg. 2015;10:815.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Marcus DS, et al. The extensible neuroimaging archive toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. Neuroinformatics. 2007;5(1):11–34.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Book GA, et al. Neuroinformatics database (NiDB)--a modular, portable database for the storage, analysis, and sharing of neuroimaging data. Neuroinformatics. 2013;11(4):495–505.PubMedCrossRefGoogle Scholar
  7. 7.
    Das S, et al. LORIS: a web-based data management system for multi-center studies. Front Neuroinform. 2011;5:37.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Scott A, et al. COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinform. 2011;5:33.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mueller SG, et al. Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 2005;1(1):55–66.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ascoli GA. The ups and downs of neuroscience shares. Neuroinformatics. 2006;4(3):213–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Ascoli GA. A community spring for neuroscience data sharing. Neuroinformatics. 2014;12(4):509–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kotter R. Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics. 2004;2(2):127–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Van Horn JD, Ishai A. Mapping the human brain: new insights from FMRI data sharing. Neuroinformatics. 2007;5(3):146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Teeters JL, et al. Data sharing for computational neuroscience. Neuroinformatics. 2008;6(1):47–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Harris PA, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.PubMedCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme Publishing Group; 1988.Google Scholar
  18. 18.
    Rohde GK, Aldroubi A, Dawant BM. The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans Med Imaging. Nov 2003;22:1470–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, et al. Fast free-form deformation using graphics processing units. Comput Methods Prog Biomed. 2010;98:278–84.CrossRefGoogle Scholar
  20. 20.
    Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods. 2005;142:67–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage. 2009;46:786–802.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pallavaram S, D’Haese PF, Lake W, Konrad PE, Dawant B, Neimat JS. Fully automated targeting using nonrigid image registration matches accuracy and exceeds precision of best manual approaches to subthalamic deep brain stimulation targeting in parkinson disease. Neurosurgery. 2015;76(6):756–65.PubMedPubMedCentralCrossRefGoogle Scholar

Suggested Reading

  1. Datteri RD, Dawant BM. Estimation of rigid-body registration quality using registration networks. In: SPIE Medical Imaging 2012; 2012a.Google Scholar
  2. Datteri RD, Dawant BM. Estimation and reduction of target registration error. Med Image Comput Comput Assist Interv. 2012b;15:139–46.PubMedPubMedCentralGoogle Scholar
  3. Datteri RD, Dawant BM. Automatic detection of the magnitude and spatial location of error in non-rigid registration. In: Biomedical image registration, 5th international workshop, WBIR 2012, Nashville; 2012c. p. 21–30.Google Scholar
  4. Datteri RD, Liu Y, D’Haese PF, Dawant BM. Validation of a nonrigid registration error detection algorithm using clinical MRI brain data. IEEE Trans Med Imaging. 2015;34:86–96.PubMedCrossRefGoogle Scholar
  5. D’Haese PF, Cetinkaya E, Konrad PE, Kao C, Dawant BM. Computer-aided placement of deep brain stimulators: from planning to intraoperative guidance. IEEE Trans Med Imaging. 2005;24:1469–78.PubMedCrossRefGoogle Scholar
  6. Henderson EY, Goble T, D’Haese PF, Pallavaram S, Oluigbo C, Agrawal P, et al. Successful subthalamic nucleus deep brain stimulation therapy after significant lead displacement from a subdural hematoma. J Clin Neurosci. Feb 2015;22:387–90.PubMedCrossRefGoogle Scholar
  7. Jermakowicz WJ, Kanner AM, Sur S, Bermudez C, D’Haese P-F, Kolcun JPG, Cajigas I, Li R, Millan C, Ribot R, Serrano EA, Velez N, Lowe MR, Rey GJ, Jagid JR. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017;58:801.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kahn E, D’Haese PF, Dawant B, Allen L, Kao C, Charles PD, et al. Deep brain stimulation in early stage Parkinson disease: operative experience from a prospective randomised clinical trial. J Neurol Neurosurg Psychiatry. Feb 2012;83:164–70.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Liu Y, Dawant BM. Automatic detection of the anterior and posterior commissures on MRI scans using regression forests. In: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE; 2014. p. 1505–8.Google Scholar
  10. Liu Y, D’Haese P-F, Dawant BM. Effects of deformable registration algorithms on the creation of statistical maps for preoperative targeting in deep brain stimulation procedures. In: SPIE medical imaging 2014: image-guided procedures, robotic interventions, and modeling, San Diego; 2014a.Google Scholar
  11. Liu Y, Konrad PE, Neimat JS, Tatter SB, Yu H, Datteri RD, et al. Multisurgeons, multisite validation of a trajectory planning algorithm for deep brain stimulation procedures. IEEE Trans Biomed Eng. 2014b;61:2479–87.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Liu Y, D’Haese P-F, Newton A, Dawant BM. Thalamic nuclei segmentation in clinical 3T T1- weighted images using high-resolution 7T shape models. Presented at the SPIE medical imaging 2015, Orlando, Florida; 2015.Google Scholar
  13. Newton A, Dawant BM, D’Haese PF. Visualizing Intrathalamic structures with combined use of MPRAGE and SWI at 7T. In: International Society for Magnetic Resonance in Medicine, Milan, Italy; 2014.Google Scholar
  14. Pallavaram S, D’Haese PF, Kao C, Yu H, Remple M, Neimat J, et al. A new method for creating electrophysiological maps for DBS surgery and their application to surgical guidance. Med Image Comput Comput Assist Interv. 2008;5241:670–7 (PMID: 18979804).Google Scholar
  15. Pallavaram S, Dawant BM, Haese M, Remple JS, Neimat C, Kao PEK, et al. A method to correct for brain shift when building electrophysiological atlases for deep brain stimulation (DBS) surgery. Med Image Comput Comput Assist Interv. 2009a;5761:557–64 (PMID: 20426032).Google Scholar
  16. Pallavaram S, Dawant BM, Koyama T, Yu H, Neimat JS, Konrad PE, et al. Validation of a fully automatic method for the routine selection of the anterior and posterior commissures in MR images. Stereotact Funct Neurosurg. 2009b;87:148–54.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Pallavaram S, Phibbs F, Tolleson C, Davis T, Fang J, Hedera P, et al. Neurologist consistency in interpreting information provided by an interactive visualization software for deep brain stimulation post-operative programming assistance. Neuromodulation. 2014;17:11–5.PubMedCrossRefGoogle Scholar
  18. Phibbs F, Pallavaram S, Tolleson C, D’Haese P-F, Dawant BM. Use of efficacy probability maps for the post-operative programming of deep brain stimulation in essential tremor. Parkinsonism Relat Disord. 2014a;20:1341–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Phibbs FT, Pallavaram S, Tolleson C, D’Haese PF, Dawant BM. Use of efficacy probability maps for the post-operative programming of deep brain stimulation in essential tremor. Parkinsonism Relat Disord. 2014b;20:1341–4.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Rezai AR, Kopell BH, Gross RE, Vitek JL, Sharan AD, Limousin P, et al. Deep brain stimulation for Parkinson disease: surgical issues. Mov Disord. 2006;21 Suppl 14:S197–218.PubMedCrossRefGoogle Scholar
  21. Tolleson C, Pallavaram S, Li C, Fang J, Phibbs F, Konrad P, et al. The optimal pallidal target in deep brain stimulation for dystonia: a study using a functional atlas based on nonlinear image registration. Stereotact Funct Neurosurg. 2014;93:17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Wu C, D’Haese PF, Pallavaram S, Dawant BM, Konrad P, Sharan AD. Variations in thalamic anatomy affect targeting in deep brain stimulation for epilepsy. Stereotact Funct Neurosurg. 2016;94(6):387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Yu H, Hedera P, Fang J, Davis TL, Konrad PE. Confined stimulation using dual thalamic deep brain stimulation leads rescues refractory essential tremor: report of three cases. Stereotact Funct Neurosurg. 2009;87:309–13.PubMedCrossRefGoogle Scholar
  24. Yu H, Kao C, Pallavaram S, Rodriguez WJ, D’Haese P-F, Davis T, et al. Simultaneous multiple electrode stimulation may be a more effective tremor control therapy. In: North American Neuromodulation Society (NANS), Las Vegas, USA; 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA

Personalised recommendations