Advertisement

An Evaluation of Single Event Effects by Heavy Ion Irradiation on Atom Switch ROM/FPGA

  • K. TakeuchiEmail author
  • M. Tada
  • T. Sakamoto
  • S. Kuboyama
Conference paper
  • 42 Downloads
Part of the Advances in Atom and Single Molecule Machines book series (AASMM)

Abstract

Atom switches embedded in read-only memories (ROMs) and field programmable gate arrays (FPGAs) were investigated in terms of single event effects (SEEs). In this study, their radiation tolerance against single event upset (SEU) was demonstrated with an LET of up to 68.9 MeV/(mg/cm2), irrespective of the voltage conditions or logic states of the cells.

Notes

Acknowledgement

The authors wish to gratefully acknowledge valuable assistance provided by the members of the TIARA accelerator operation group at QST. The authors would also like to thank Ryoei Technica Corp. for its technical support.

References

  1. 1.
    Van Allen, J.A., McIlwain, C.E., Ludwig, G.H.: Radiation observations with satellite 1958 ε. J. Geophys. Res. 64(3), 271–286 (1959)CrossRefGoogle Scholar
  2. 2.
    McIlwain, C.E.: Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66(11), 3681–3691 (1961)CrossRefGoogle Scholar
  3. 3.
    SPENVIS—Space environment, effects, and education system. https://www.spenvis.oma.be/
  4. 4.
    Goka, T. et al.: Space Environment Risk Dictionary (2006)Google Scholar
  5. 5.
    Pellish, J.: Single-event and total dose testing for advanced electronics. IEEE NSREC short course (2012)Google Scholar
  6. 6.
    Marshall Space Flight Center, NASA. https://solarscience.msfc.nasa.gov/SunspotCycle.shtml
  7. 7.
    Mewaldt, R.A.: Galactic cosmic ray composition and energy spectra. Adv. Space Res. 14(10), 737–747 (1994)CrossRefGoogle Scholar
  8. 8.
    Baumann, R.C.: Landmarks in terrestrial single-event effects. IEEE NSREC short course (2013)Google Scholar
  9. 9.
    Hsieh, C.M., Murley, P.C., O’Brien, R.R.: A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices. IEEE Electron Device Lett. 2(4), 103–105 (1981)CrossRefGoogle Scholar
  10. 10.
    Hu, C.: Alpha-particle-induced field and enhanced collection of carriers. IEEE Electron Device Lett. 3(2), 31–34 (1982)CrossRefGoogle Scholar
  11. 11.
    Eigler, D.M., Lutz, C.P., Rudge, W.E.: An atomic switch realized with the scanning tunnelling microscope. Nature. 352(6336), 600–603 (1991)CrossRefGoogle Scholar
  12. 12.
    Li, C.Z., Tao, N.J.: Quantum transport in metallic nanowires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 72(8), 894–896 (1998)CrossRefGoogle Scholar
  13. 13.
    Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature. 433(7021), 47–50 (2005)CrossRefGoogle Scholar
  14. 14.
    Aono, M., Hasegawa, T.: The atomic switch. Proc. IEEE. 98(12), 2228–2236 (2010)CrossRefGoogle Scholar
  15. 15.
    Aono, M., Hasegawa, T.: The present status and the future of the atomic switch. In: 2011 International Electron Devices Meeting. IEEE, pp. 30.1.1–30.1.4 (2011)Google Scholar
  16. 16.
    Valov, I., Waser, R., Jameson, J.R., Kozicki, M.N.: Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology. 22(25), 254003 (2011)CrossRefGoogle Scholar
  17. 17.
    Cressler, J.D.: Extreme Environment Electronics. CRC, Boca Raton, FL (2012)CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Velo, Y., Barnaby, H.J., Kozicki, M.N., Gopalan, C., Holbert, K.: Total ionizing dose retention capability of conductive bridging random access memory. IEEE Electron Device Lett. 35(2), 205–207 (2014)CrossRefGoogle Scholar
  19. 19.
    Jameson, J.R., Blanchard, P., Cheng, C., Dinh, J., Gallo, A., Gopalakrishnan, V., Gopalan, C., Guichet, B., Hsu, S., Kamalanathan, D., Kim, D., Koushan, F., Kwan, M., Law, K., Lewis, D., Ma, Y., McCaffrey, V., Park, S., Puthenthermadam, S., Runnion, E., Sanchez, J., Shields, J., Tsai, K., Tysdal, A., Wang, D., Williams, R., Kozicki, M. N., Wang, J., Gopinath, V., Hollmer, S., Van Buskirk, M.: Conductive-bridge memory (CBRAM) with excellent high-temperature retention. In: 2013 IEEE International Electron Devices Meeting. IEEE, pp. 30.1.1–30.1.4 (2013)Google Scholar
  20. 20.
    Mahalanabis, D., Barnaby, H.J., Kozicki, M.N., Bharadwaj, V., Rajabi, S.: Investigation of single event induced soft errors in programmable metallization cell memory. IEEE Trans. Nucl. Sci. 61(6), 3557–3563 (2014)CrossRefGoogle Scholar
  21. 21.
    Chen, D., Wilcox, E., Berg, M., Kim, H., Phan, A., Figueiredo, M., Seidleck, C., LaBel, K.: Single-event effect performance of a conductive-bridge memory EEPROM. IEEE Trans. Nucl. Sci. 62(6), 2703–2708 (2015)CrossRefGoogle Scholar
  22. 22.
    Okamoto, K., Tada, M., Sakamoto, T., Miyamura, M., Banno, N., Iguchi, N., Hada, H.: Conducting mechanism of atom switch with polymer solid-electrolyte. Tech. Digest. 1, 279–282 (2011)Google Scholar
  23. 23.
    Sakamoto, T., Tsuji, Y., Tada, M., Makiyama, H., Hasegawa, T., Yamamoto, Y., Okanishi, S., Maekawa, K., Banno, N., Miyamura, M., Okamoto, K., Iguchi, N., Oda, H., Kamohara, S., Yamagata, Y., Sugii, N., Hada, H., Ogasahara, Y.: A silicon-on-thin-buried-oxide CMOS microcontroller with embedded atom-switch ROM. IEEE Micro. 35(6), 13–23 (2015)CrossRefGoogle Scholar
  24. 24.
    Miyamura, M., Sakamoto, T., Tada, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: Low-power programmable-logic cell arrays using nonvolatile complementary atom switch. In: 15th International Symposium on Quality Electronic Design. IEEE, pp. 330–334 (2014)Google Scholar
  25. 25.
    Miyamura, M., Sakamoto, T., Tsuji, Y., Tada, M., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: 0.5-V highly power-efficient programmable logic using nonvoltile configuration switch in BEOL. In: 23rd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2015)Google Scholar
  26. 26.
    Miyamura, M., Tada, M., Sakamoto, T., Banno, N., Okamoto, K., Iguchi, N., Hada, H.: First demonstration of logic mapping on nonvolatile programmable cell using complementary atom switch. In: 2012 International Electron Devices Meeting. IEEE, pp. 10.6.1–10.6.4 (2012)Google Scholar
  27. 27.
    The stopping and range of ions in matter. http://www.srim.org/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • K. Takeuchi
    • 1
    Email author
  • M. Tada
    • 2
  • T. Sakamoto
    • 2
  • S. Kuboyama
    • 1
  1. 1.Research and Development DirectorateJapan Aerospace Exploration Agency (JAXA)Tsukuba, IbarakiJapan
  2. 2.System Platform Research LaboratoriesNEC Corp.Tsukuba, IbarakiJapan

Personalised recommendations