An Efficient Method for Automatic Recognition of Virus Particles in TEM Images

  • Debamita KumarEmail author
  • Pradipta Maji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11942)


The conventional approach for virus detection is based on analyzing the negative stain Transmission Electron Microscopy (TEM) images. In this regard, a new method is presented here based on judicious integration of the theory of rough sets and the merits of local texture descriptors. The proposed method identifies the relevant local texture descriptor for representing the intrinsic properties of each pair of virus classes. It also selects important features from each of the relevant descriptors, which can suitably describe significant characteristics of the virus particles present in TEM images. The hypercuboid equivalence partition matrix of rough sets is employed to evaluate the relevance of texture descriptors. Finally, support vector machine (SVM) is used to categorize the virus samples into one of the known virus classes. The efficiency of the proposed method, along with a comparison with related approaches, is demonstrated on publicly available Virus data set.


Virus recognition Transmission Electron Microscopy (TEM) images Rough sets Feature selection Local texture descriptor 



This publication is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics and Information Technology, Government of India, being implemented by Digital India Corporation.


  1. 1.
    Almeida, J.D.: A classification of virus particles based on morphology. Can. Med. Assoc. J. 89(16), 787–798 (1963)Google Scholar
  2. 2.
    Almeida, J.D., Waterson, A.P.: Some implications of a morphologically oriented classification of viruses. Arch. Virol. 32(1), 66–72 (1970)Google Scholar
  3. 3.
    Goldsmith, C.S., Miller, S.E.: Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 22(4), 552–563 (2009)CrossRefGoogle Scholar
  4. 4.
    Guo, Y., Zhao, G., Pietikäinen, M.: Discriminative features for texture description. Pattern Recogn. 45(10), 3834–3843 (2012)CrossRefGoogle Scholar
  5. 5.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  6. 6.
    Harandi, M., Salzmann, M., Porikli, F.: Bregman divergences for infinite dimensional covariance matrices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1003–1010 (2014)Google Scholar
  7. 7.
    Ito, E., Sato, T., Sano, D., Utagawa, E., Kato, T.: Virus particle detection by convolutional neural network in transmission electron microscopy images. Food Environ. Virol. 10(2), 201–208 (2018)CrossRefGoogle Scholar
  8. 8.
    Kylberg, G., Uppstrom, M., Borgefors, G., Sintorn, I.-M.: Segmentation of virus particle candidates in transmission electron microscopy images. J. Microsc. 245, 140–147 (2012)CrossRefGoogle Scholar
  9. 9.
    Kylberg, G., Uppström, M., Sintorn, I.-M.: Virus texture analysis using local binary patterns and radial density profiles. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 573–580. Springer, Heidelberg (2011). Scholar
  10. 10.
    Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Maji, P.: A rough hypercuboid approach for feature selection in approximation spaces. IEEE Trans. Knowl. Data Eng. 26(1), 16–29 (2014)CrossRefGoogle Scholar
  12. 12.
    Matuszewski, B.J., Shark, L.-K.: Hierarchical iterative Bayesian approach to automatic recognition of biological viruses in electron microscope images. In: Proceedings of the International Conference on Image Processing, pp. 347–350 (2001)Google Scholar
  13. 13.
    Nanni, L., Paci, M., Brahnam, S., Ghidoni, S., Menegatti, E.: Virus image classification using different texture descriptors. In: Proceedings of the International Conference on Bioinformatics and Computational Biology, Las Vegas, NV (2013)Google Scholar
  14. 14.
    Nosaka, R., Ohkawa, Y., Fukui, K.: Feature extraction based on co-occurrence of adjacent local binary patterns. In: Ho, Y.-S. (ed.) PSIVT 2011. LNCS, vol. 7088, pp. 82–91. Springer, Heidelberg (2011). Scholar
  15. 15.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Ong, H.C.L.: Virus recognition in electron microscope images using higher order spectral features. Ph.D. thesis, Queensland University of Technology (2006)Google Scholar
  18. 18.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991). ISBN 0792314727CrossRefGoogle Scholar
  19. 19.
    Sintorn, I.-M., Homman-Loudiyi, M., Söderberg-Nauclér, C., Borgefors, G.: A refined circular template matching method for classification of human cytomegalovirus capsids in TEM images. Comput. Methods Programs Biomed. 76(2), 95–102 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Biomedical Imaging and Bioinformatics Lab, Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations