Advertisement

On the Study of Childhood Medulloblastoma Auto Cell Segmentation from Histopathological Tissue Samples

  • Daisy Das
  • Lipi B. MahantaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11942)

Abstract

Whole slide imaging in histopathology is one of the most important aspects of computational pathology. Nucleus identification and extraction can play a critical part in digital microscopic examination. This work is an extension of our previous published work on childhood medulloblastoma biopsy machine learning classification where the classifier was based on ground truth annotated data. However complete automation would entail automatic segmentation of the cells. The paper explores various segmentation techniques for cell identification from biopsy tissue samples of childhood medulloblastoma microscopic images based on conventional machine learning methods. The study is based on indigenous patient data collected from medical centers of the region. The performance of the segmentation algorithms was compared using Jaccard and Dice coefficient metric.

Keywords

Segmentation Cell Childhood medulloblastoma 

Notes

Acknowledgment

We thank IASST, GMCH, GNRC and Ayursundra Healthcare Ltd. for giving us the platform to carry our work.

Conflict of Interest

The Authors declare no conflict(s) of interest.

References

  1. 1.
    Gurcan, M., et al.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)CrossRefGoogle Scholar
  2. 2.
    Petushi, S., et al.: Large-scale computations on histology images reveal grade-differentiating parameters for breast cancer. BMC Med. Imaging 6(1), 1–14 (2006)CrossRefGoogle Scholar
  3. 3.
    Naik, S., et al.: Gland segmentation and computerized Gleason grading of prostate histology by integrating low-, high-level and domain-specific information. MI- AAB Workshop, vol. 34, pp. 1–8. Springer, Australas (2007). Australas Phys. Eng. Sci. Med.Google Scholar
  4. 4.
    Lu, C., et al.: A robust automatic nuclei segmentation technique for quantitative histopathological image analysis. Anal. Quant. Cytol. Histol. 34, 296–308 (2012)Google Scholar
  5. 5.
    Su, H., Xing, F., Yang, L.: Robust cell detection of histopathological brain tumor images using sparse reconstruction and adaptive dictionary selection. IEEE Trans. Med. Imaging 35(6), 1575–1586 (2016)CrossRefGoogle Scholar
  6. 6.
    Chang, H., et al.: Invariant delineation of nuclear architecture in glioblastoma multi-forme for clinical and molecular association. IEEE Trans. Med. Imaging 32(4), 670–682 (2013)CrossRefGoogle Scholar
  7. 7.
    Filipczuk, P., et al.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)CrossRefGoogle Scholar
  8. 8.
    Sethi, A., et al.: Computational pathology for predicting prostate cancer recurrence. In: AACR s106th Annual Meeting, vol. 75, no. 15, pp. 18–22. American Association for Cancer Research, Philadelphia (2015).  https://doi.org/10.1158/1538-7445.AM2015-LB-285
  9. 9.
    Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 1–9. IEEE, Boston (2015).  https://doi.org/10.1109/CVPR.2015.7298594
  10. 10.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, vol. abs/1409.1556, pp. 730–734. IEEE, Kuala Lumpur (2014)Google Scholar
  11. 11.
    Socher, R., et al.: Parsing natural scenes and natural language with recursive neural networks. In: ICML, pp. 129–136 (2011)Google Scholar
  12. 12.
    WHO classification of CNS tumours. https://radiopaedia.org/articles/who-classification-of-CNS-tumours-1. Accessed 28 Jan 2016
  13. 13.
    Galaro, J., et al.: A method for medulloblastoma tumor differentiation based on convolutional neural networks and transfer learning. In: SPIE 9681, 11th International Symposium on Medical Information Processing and Analysis, IEEE, Boston (2016).  https://doi.org/10.1117/12.2208825
  14. 14.
    Lai, Y., et al.: A texture-based classifier to discriminate anaplastic from non-anaplastic medulloblastoma. In: IEEE 37th Annual Northeast on Bioengineering Conference (NEBEC), pp. 141–171. IEEE, Troy (2011)Google Scholar
  15. 15.
    Roa, A.C., et al.: An integrated texton and bag of words classifier for identifying anaplastic medulloblastomas. In: 11th International Symposium on Medical Information Processing and Analysis, pp. 3443–3446. IEEE, Cuenca (2015)Google Scholar
  16. 16.
    Tchikindas, L., et al.: Segmentation of nodular medulloblastoma using random walker and hierarchical normalized cuts. In: IEEE 37th Annual Northeast Bioengineering Conference, pp. 4–5. IEEE, Troy (2011)Google Scholar
  17. 17.
    Das, D., et al.: Study on contribution of biological interpretable and computer- aided features towards the classification of childhood medulloblastoma cells. J. Med. Syst. 42(151), 5–12 (2018)Google Scholar
  18. 18.
    Pachai, C., et al.: Unsupervised and adaptive segmentation of multispectral 3D magnetic resonance images of human brain: a generic approach. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1067–1074. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45468-3_127CrossRefGoogle Scholar
  19. 19.
    Lee, L.K., Liew, S.C., Thong, W.J.: A review of image segmentation methodologies in medical image. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Computer and Communication Engineering Technology. LNEE, vol. 315, pp. 1069–1080. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-07674-4_99CrossRefGoogle Scholar
  20. 20.
    Priya, T., Kalavathi, P.: HSV based histogram thresholding technique for MRI brain tissue segmentation. In: Thampi, S.M., Marques, O., Krishnan, S., Li, K.-C., Ciuonzo, D., Kolekar, M.H. (eds.) SIRS 2018. CCIS, vol. 968, pp. 322–333. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-5758-9_27CrossRefGoogle Scholar
  21. 21.
    Satapathy, C.S., et al.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. 29(12), 1285–1307 (2018)CrossRefGoogle Scholar
  22. 22.
    Srinivas, B., Sasibhushana Rao, G.: Performance evaluation of fuzzy c means segmentation and support vector machine classification for MRI brain tumor. In: Bansal, J.C., Das, K.N., Nagar, A., Deep, K., Ojha, A.K. (eds.) Soft Computing for Problem Solving. AISC, vol. 817, pp. 355–367. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-1595-4_29CrossRefGoogle Scholar
  23. 23.
    Zhou, H., Schaefer, G., Shi, C.: Fuzzy c-means techniques for medical image segmentation. In: Jin, Y., Wang, L. (eds.) Fuzzy Systems in Bioinformatics and Computational Biology. STUDFUZZ, vol. 242, pp. 257–271. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-540-89968-6_13CrossRefGoogle Scholar
  24. 24.
    Lim, P.U., Lee, Y., Jung, Y., Cho, J.H., Kim, M.N.: Liver extraction in the abdominal CT image by watershed segmentation algorithm. In: Magjarevic, R., Nagel, J.H. (eds.) World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE, vol. 14, pp. 2563–2566. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-36841-0_646CrossRefGoogle Scholar
  25. 25.
    Singh, S.K., Goyal, A.: A novel approach to segment nucleus of uterine cervix pap smear cells using watershed segmentation. In: Singh, D., Raman, B., Luhach, A.K., Lingras, P. (eds.) Advanced Informatics for Computing Research. CCIS, vol. 712, pp. 164–174. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-5780-9_15CrossRefGoogle Scholar
  26. 26.
    Chapman, C., Feit, E.M.: Segmentation: clustering and classification. R For Marketing Research and Analytics. UR, pp. 299–340. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14316-9_11CrossRefGoogle Scholar
  27. 27.
    Melloul, M., Joskowicz, L.: Segmentation of microcalcification in X-ray mammograms using entropy thresholding. In: Lemke, H.U., Inamura, K., Doi, K., Vannier, M.W., Farman, A.G., Reiber, J.H.C. (eds.) CARS 2002 Computer Assisted Radiology and Surgery, pp. 671–676. Springer, Berlin (2002).  https://doi.org/10.1007/978-3-642-56168-9_112CrossRefGoogle Scholar
  28. 28.
    Manjunath, A.P., Rachana, C.S., Ranjini, S.: Retinal vessel segmentation using local entropy thresholding. In: Sridhar, V., Sheshadri, H., Padma, M. (eds.) Emerging Research in Electronics, Computer Science and Technology. LNEE, vol. 248, pp. 1–8. Springer, New Delhi (2014).  https://doi.org/10.1007/978-81-322-1157-0_1CrossRefGoogle Scholar
  29. 29.
    Belsare, A.D., Mushrif, M.M.: Histopathological image analysis using image processing techniques: an overview. Int. J. Signal Image Process. 3, 23–36 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Central Computational and Numerical Studies DepartmentInstitute of Advanced Study in Science and TechnologyGuwahatiIndia

Personalised recommendations