Advertisement

Sparsity Regularization Based Spatial-Spectral Super-Resolution of Multispectral Imagery

  • Helal Uddin Mullah
  • Bhabesh DekaEmail author
  • Trishna Barman
  • A. V. V. Prasad
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11941)

Abstract

Multispectral (MS) remote sensing image is composed of several spectral bands of distinct wavelengths. Most earth observation satellites provide MS images consisting several low-resolution (LR) bands together with a single high-resolution (HR) image. A single image super-resolution (SISR) method tries to produce a HR MS output from the given LR MS input using digital image processing algorithms. In this work, we present a patch-wise sparse representation based MS image SR using a coupled overcomplete trained dictionary. The dictionary learning is carried out from patches extracted from the given HR panchromatic (PAN) image itself. Experiments are carried out using test MS images from QuickBird satellites and results are compared with other state-of-the-art MS image SR and pan-sharpening methods.

Keywords

Super-resolution Sparse representation Dictionary learning Pan-sharpening Spectral information 

Notes

Acknowledgements

Authors would like to thank ISRO for providing funds under the RESPOND project (ISRO/RES/4/642/17-18) and Ministry of Electronics and Information Technology (MeiTY), GoI for providing financial support under the Visvesvaraya Ph.D. Scheme for Electronics & IT (Ph.D./MLA/ 04(41)/2015-16/01) which helped in smooth conduction of the above research work.

References

  1. 1.
    Alvarez-Ramos, V., Ponomaryov, V., Reyes-Reyes, R., Gallegos-Funes, F.: Satellite image super-resolution using overlapping blocks via sparse representation. In: International Kharkiv Symposium on Physics and Engineering of Microwaves. Millimeter and Submillimeter Waves (MSMW 2016), Kharkiv, Ukraine, pp. 1–4 (2016)Google Scholar
  2. 2.
    Amro, I., Mateos, J., Vega, M., Molina, R., Katsaggelos, A.K.: A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP J. Adv. Signal Process. 2011(1), 1–22 (2011)CrossRefGoogle Scholar
  3. 3.
    Deka, B., Datta, S.: Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms. SSBN, vol. 9. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-3597-6CrossRefGoogle Scholar
  4. 4.
    Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing, 1st edn. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-7011-4CrossRefzbMATHGoogle Scholar
  5. 5.
    Fernandez-Beltran, R., Latorre-Carmona, P., Pla, F.: Single-frame super-resolution in remote sensing: a practical overview. Int. J. Remote Sens. 38(1), 314–354 (2017)CrossRefGoogle Scholar
  6. 6.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19 (NIPS-2006), pp. 801–808. MIT Press, Vancouver (2007)Google Scholar
  7. 7.
    Mullah, H.U., Deka, B.: A fast satellite image super-resolution technique using multicore processing. In: Abraham, A., Muhuri, P.K., Muda, A.K., Gandhi, N. (eds.) HIS 2017. AISC, vol. 734, pp. 51–60. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76351-4_6CrossRefGoogle Scholar
  8. 8.
    Rubinstein, R., Zibulevsky, M., Elad, M.: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical report 40, Computer Science Departmen, Technion, Haifa, Israel (2008)Google Scholar
  9. 9.
    Shah, V.P., Younan, N.H., King, R.L.: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens. 46(5), 1323–1335 (2008)CrossRefGoogle Scholar
  10. 10.
    Shahdoosti, H.R., Ghassemian, H.: Fusion of MS and PAN images preserving spectral quality. IEEE Geosci. Remote Sens. Lett. 12(3), 611–615 (2015)CrossRefGoogle Scholar
  11. 11.
    Tu, T.-M., Su, S.C., Shyu, H.C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fusion 2(3), 177–186 (2001)CrossRefGoogle Scholar
  12. 12.
    Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, Y.: Problems in the fusion of commercial high-resolution satelitte as well as landsat 7 images and initial solutions. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 34, 587–592 (2002)Google Scholar
  14. 14.
    Zhu, X.X., Bamler, R.: A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 51(5), 2827–2836 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Helal Uddin Mullah
    • 1
  • Bhabesh Deka
    • 1
    Email author
  • Trishna Barman
    • 1
  • A. V. V. Prasad
    • 2
  1. 1.Department of Electronics and Communication EngineeringTezpur UniversityTezpurIndia
  2. 2.National Remote Sensing CentreHyderabadIndia

Personalised recommendations