Advertisement

An Aggregated Rank Removal Heuristic Based Adaptive Large Neighborhood Search for Work-over Rig Scheduling Problem

  • Naveen ShajiEmail author
  • Cheruvu Syama Sundar
  • Bhushan Jagyasi
  • Sushmita Dutta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11941)

Abstract

Work-over Rig Scheduling Problem (WRSP) is a well known challenge in oil & gas industry. Given the limited number of work-over rigs to cater to the maintenance needs of a large number of wells, the challenge lies in planning an optimum schedule that minimizes the overall production loss. In this work, we propose a new Aggregated Rank Removal Heuristic (ARRH) applied to Adaptive Large Neighborhood Search to solve WRSP. The proposed approach results in more efficient searches as compared to existing heuristics - Genetic Algorithm, Variable Neighborhood Search and Adaptive Large Neighborhood Search.

References

  1. 1.
    Aloise, D.J., Aloise, D., Rocha, C.T., Ribeiro, C.C., Filho, J.C.R., Moura, L.S.: Scheduling workover rigs for onshore oil production. Discrete Appl. Math. 154(5), 695–702 (2006).  https://doi.org/10.1016/j.dam.2004.09.021. http://www.sciencedirect.com/science/article/pii/S0166218X05003008. IV ALIO/EURO Workshop on Applied Combinatorial OptimizationMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  3. 3.
    Li, F., Golden, B., Wasil, E.: The open vehicle routing problem: algorithms, large-scale test problems, and computational results. Comput. Oper. Res. 34(10), 2918–2930 (2007).  https://doi.org/10.1016/j.cor.2005.11.018. http://www.sciencedirect.com/science/article/pii/S0305054805003515CrossRefzbMATHGoogle Scholar
  4. 4.
    Liu, R., Jiang, Z.: A hybrid large-neighborhood search algorithm for the cumulative capacitated vehicle routing problem with time-window constraints. Appl. Soft Comput. 80, 18–30 (2019).  https://doi.org/10.1016/j.asoc.2019.03.008. http://www.sciencedirect.com/science/article/pii/S1568494619301267CrossRefGoogle Scholar
  5. 5.
    Lysgaard, J., Wøhlk, S.: A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 236, 800–810 (2014).  https://doi.org/10.1016/j.ejor.2013.08.032MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ngueveu, S.U., Prins, C., Calvo, R.W.: An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Ope. Res. 37(11), 1877–1885 (2010).  https://doi.org/10.1016/j.cor.2009.06.014. http://www.sciencedirect.com/science/article/pii/S0305054809001725. metaheuristics for Logistics and Vehicle RoutingMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ribeiro, G., Mauri, G., Lorena, L.: A simple and robust simulated annealing algorithm for scheduling workover rigs on onshore oil fields. Comput. Ind. Eng. 60, 519–526 (2011).  https://doi.org/10.1016/j.cie.2010.12.006CrossRefGoogle Scholar
  8. 8.
    Ribeiro, G.M., Laporte, G., Mauri, G.R.: A comparison of three metaheuristics for the workover rig routing problem. Eur. J. Oper. Res. 220(1), 28–36 (2012).  https://doi.org/10.1016/j.ejor.2012.01.031. http://www.sciencedirect.com/science/article/pii/S0377221712000665MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sze, J.F., Salhi, S., Wassan, N.: The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: an effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search. Transp. Res. Part B Methodol. 101, 162–184 (2017).  https://doi.org/10.1016/j.trb.2017.04.003. http://www.sciencedirect.com/science/article/pii/S0191261516308396CrossRefGoogle Scholar
  10. 10.
    Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21 (2013).  https://doi.org/10.1016/j.ejor.2013.02.053. http://www.sciencedirect.com/science/article/pii/S0377221713002026MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bassi, H.V., Ferreira Filho, V.J.M., Bahiense, L.: Planning and scheduling a fleet of rigs using simulation-optimization. Comput. Ind. Eng. 63, 1074–1088 (2012).  https://doi.org/10.1016/j.cie.2012.08.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Accenture Advanced Technology Centers in IndiaMumbaiIndia

Personalised recommendations