Towards an Efficient Prediction Model of Malaria Cases in Senegal

  • Ousseynou Mbaye
  • Mouhamadou Lamine BaEmail author
  • Gaoussou Camara
  • Alassane Sy
  • Balla Mbacké Mboup
  • Aldiouma Diallo
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 296)


One amongst the most deadly diseases in the world, Malaria remains a real flail in Sub-saharan Africa. In underdeveloped countries, e.g. Senegal, such a situation is acute due to the lack of high quality healthcare services and well-formed persons able to perform accurate diagnosis of diseases that patients suffer from. This requires to set up automated tools which will help medical actors in their decision making process. In this paper, we present first steps towards an efficient way to automatically diagnosis an occurence or not of Malaria based on patient signs and symptoms, and the outcome from the quick diagnosis test. Our prediction approach is built on the logistic regression function. First experiments on a real world patient dataset collected in Senegal, as well as a semi-synthetic dataset, show promising performance results regarding the effectiveness of the proposed approach.


Malaria Diagnosis Data imputation Prediction model 


  1. 1.
    Openrefine. Accessed 30 Oct 2018
  2. 2.
    Programme national de lutte contre le paludisme. Accessed 15 Jan 2019
  3. 3.
    Python implementation of missforest. Accessed 31 Oct 2018
  4. 4.
    Adimi, F., Soebiyanto, R.P., Safi, N., Kiang, R.: Towards malaria risk prediction in Afghanistan using remote sensing. Malaria J. 9(1), 125 (2010)CrossRefGoogle Scholar
  5. 5.
    Aminot, I., Damon, M.: The use of logistic regression in the analysis of data concerning good medical practice. Rev. Med. Assur. Mal. 33(2), 143–157 (2002)Google Scholar
  6. 6.
    Aly, A.S., Vaughan, A.M., Kappe, S.H.: Malaria parasite development in the mosquito and infection of the mammalian host. Ann. Rev. Microbiol. 63, 195–221 (2009)CrossRefGoogle Scholar
  7. 7.
    Bbosa, F., Wesonga, R., Jehopio, P.: Clinical malaria diagnosis: rule-based classification statistical prototype. SpringerPlus 5(1), 939 (2016)CrossRefGoogle Scholar
  8. 8.
    Chiroma, H., et al.: Malaria severity classification through Jordan-Elman neural network based on features extracted from thick blood smear. Neural Netw. World 25(5), 565 (2015)CrossRefGoogle Scholar
  9. 9.
    Daz, G., Gonzlez, F.A., Romero, E.: A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J. Biomed. Inf. 42(2), 296–307 (2009)CrossRefGoogle Scholar
  10. 10.
    Dua, S., Acharya, U.R., Dua, P.: Machine Learning in Healthcare Informatics. Springer Publishing Company, Incorporated (2013)Google Scholar
  11. 11.
    Ferguson, H.M., Mackinnon, M.J., Chan, B.H., Read, A.F.: Mosquito mortality and the evolution of malaria virulence. Evolution 57(12), 2792–2804 (2003)CrossRefGoogle Scholar
  12. 12.
    Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley (2000)Google Scholar
  13. 13.
    Kunwar, S.: Malaria detection using image processing and machine learning. ArXiv e-prints. January 2018Google Scholar
  14. 14.
    Kusumasari, T.F., Fitria: data profiling for data quality improvement with openrefine. In: 2016 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1–6, October 2016Google Scholar
  15. 15.
    Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a Python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017)zbMATHGoogle Scholar
  16. 16.
    Preux, P., Odermatt, P., Perna, A., Marin, B., Vergnengre, A.: Qu’est-ce qu’une regression logistique ? Revue des Mal. Respir. 22(1, Part 1), 159–162 (2005)CrossRefGoogle Scholar
  17. 17.
    Rajpurkar, P., Polamreddi, V., Balakrishnan, A.: Malaria likelihood prediction by effectively surveying households using deep reinforcement learning. CoRR abs/1711.09223 (2017)Google Scholar
  18. 18.
    Robert, C.: Machine learning, a probabilistic perspective. CHANCE 27(2), 62–63 (2014)CrossRefGoogle Scholar
  19. 19.
    Silva, L.O., Zárate, L.E.: A brief review of the main approaches for treatment of missing data. Intell. Data Anal. 18(6), 1177–1198 (2014)CrossRefGoogle Scholar
  20. 20.
    Sokhna, C., et al.: Communicable and non-communicable disease risks at the Grand Magal of Touba: the largest mass gathering in Senegal. Travel Med. Infect. Dis. 19, 56–60 (2017)CrossRefGoogle Scholar
  21. 21.
    Sperandei, S.: Understanding logistic regression analysis. Biochem. Med. 24, 12–18 (2014)CrossRefGoogle Scholar
  22. 22.
    Stekhoven, D.J., Bhlmann, P.: MissForest: non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1), 112–118 (2012)CrossRefGoogle Scholar
  23. 23.
    Swalin, A.: How to handle missing data. Accessed 31 October 2018
  24. 24.
    Ugwu, C., Onyejegbu, N.L., Obagbuwa, I.C.: The application of machine learning technique for malaria diagnosis. Int. J. Green Comput. 1(1), 68–77 (2010)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Xu, M., Wang, H., Zhang, J.: Classification of imbalanced data by using the smote algorithm and locally linear embedding. In: 2006 8th International Conference on Signal Processing, vol. 3, November 2006Google Scholar
  26. 26.
    WHO: World malaria report in 2017 (2017)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Ousseynou Mbaye
    • 1
  • Mouhamadou Lamine Ba
    • 1
    Email author
  • Gaoussou Camara
    • 1
    • 2
  • Alassane Sy
    • 1
  • Balla Mbacké Mboup
    • 3
  • Aldiouma Diallo
    • 4
  1. 1.LIMA,Université Alioune DiopBambeySenegal
  2. 2.Sorbonne Université, IRD, UMMISCOBondyFrance
  3. 3.Région Médicale de DiourbelDiourbelSenegal
  4. 4.Vitrome, IRD. campus universitaire Hann maristesDakarSenegal

Personalised recommendations