Heat Transfer Analysis in the Strapdown Inertial Unit of the Navigation System

  • Sergiy Yu. PogorilovEmail author
  • Valeriy L. KhavinEmail author
  • Konstantin Naumenko
  • Kyrill Yu. Schastlivets
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 121)


This paper proposes an approach to modeling the temperature field of astrapdown inertial unit that is part of an inertial navigation system based on fiberopticgyroscopes. A design scheme, a mathematical and finite element model forcalculating the temperature field for the strapdown inertial unit has been developed.Results of numerical simulations including the effect of changes in external temperatureon the temperature field in the device and temperature gradients at specifiedpoints of the device are presented.


Strapdown inertial unit Navigation system Heat transfer Temperature gradients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breslavsky D, Pogorelov S, Schastlivets K, Batyrev B, Kuznetsov Y, Oleynik S (2012) Development of method to determine temperatur gradients in fiber-optic gyroscope OIUS501. Mechanika ta Mashinobuduvannya (1):90–101, (in Russian)Google Scholar
  2. Diesel JW, Dunn GP (1996) Method for in-field updating of the gyro thermal calibration of an intertial navigation system. US Patent 5,527,003Google Scholar
  3. Dzhashitov V, Pankratov V (2014) Control of temperature fields of a strapdown inertial navigation system based on fiber optic gyroscopes. Journal of Computer and Systems Sciences International 53(4):565–575CrossRefGoogle Scholar
  4. Dzhashitov V, Pankratov V, Golikov A (2014) Mathematical simulation of temperature field control of the strapdown inertial navigation system based on optical fiber sensors. Journal of Machinery Manufacture and Reliability 43(1):75–81CrossRefGoogle Scholar
  5. Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models, Advanced Structured Materials, vol 28. SpringerGoogle Scholar
  6. Nellis G, Klein S (2009) Heat Transfer. Cambridge University PressGoogle Scholar
  7. Pogorelov S, Schastlivets K (2005) Refinement of the computational model of a ring laser gyroscope based on experimental data. Vestnik NTU KhPI (47):153–158,(in Russian)Google Scholar
  8. Shan WXM (2009) Nonlinearity of temperature and scale factor modeling and compensating of FOG. Journal of Beijing University of Aeronautics and Astronautics 25:28–31Google Scholar
  9. Shen C, Chen X (2012) Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature. Applied Optics 51(14):2541–2547CrossRefGoogle Scholar
  10. Zhang Y,Wang Y, Yang T, Yin R, Fang J (2012) Dynamic angular velocity modeling and error compensation of one-fiber fiber optic gyroscope (OFFOG) in the whole temperature range. Measurement Science and Technology 23(2):025,101CrossRefGoogle Scholar
  11. Zhang Y, Guo Y, Li C, Wang Y, Wang Z (2015) A new open-loop fiber optic gyro error compensation method based on angular velocity error modeling. Sensors 15(3):4899–4912CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Continuum Mechanics and Strength of MaterialsNational Technical University ”Kharkiv Polytechnic Institute”KharkivUkraine
  2. 2.Institut für Mechanik, Otto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations