Effective Properties of Composite Material Based on Total Strain Energy Equivalence

  • Anna WisniewskaEmail author
  • Szymon HernikEmail author
  • Halina Egner
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 121)


In the present work the mechanical equivalence hypothesis, classically used in continuum damage mechanics problems, was applied to estimate the elastoplastic properties of isotropic composite materials. The equivalence of total internal energy was postulated between a real, heterogeneous composite material, and a fictitious, quasi-homogeneous configuration. The properties of a composite material were expressed as analytical functions of an inclusion volume fraction and properties of constituent materials. The results were compared with the results of several other methods of efective elastic properties estimation. In the inelastic range of the material response the proposed approach was examined by means of parametric studies to showits ability to reflect different experimentally observed features of real composite materials.


Effective properties Composite material Constitutive modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASM (1990) ASM Handbook, vol 2 Properties and Selection: Nonferrous Alloys and Special-purpose Materials. ASM International Handbook CommitteeGoogle Scholar
  2. BonfieldW(1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. Annals of the New York Academy of Sciences 523:173–177CrossRefGoogle Scholar
  3. Chaboche J (1997) Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. International Journal of Solids and Structures 34(18):2239–2254CrossRefGoogle Scholar
  4. Charriére E, Terrazzoni S, Pittet C, Mordasini P, Dutoit M, Lemaître J, Zysset P (2001) Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22:2937–2945CrossRefGoogle Scholar
  5. Chow C, Lu T (1992) An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading. International Journal of Damage Mechanics 1:191–236CrossRefGoogle Scholar
  6. Egner H (2012) On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. International Journal of Solids and Structures 49(2):279–288CrossRefGoogle Scholar
  7. Egner H, Rys M (2017) Total energy equivalence in constitutive modelling of multidissipative materials. International Journal of Damage Mechanics 3:417–446CrossRefGoogle Scholar
  8. Ganczarski AW, Egner H, Muc A, Skrzypek JJ (2010) Constitutive models for analysis and design of multifunctional technological materials. In: Rustichelli F, Skrzypek J (eds) Innovative Technological Materials: Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling, Springer, pp 179–223Google Scholar
  9. Koszkul J (2001) Kompozyty poliamidu 6 z włóknem szklanym. Composites 1(2):159–162Google Scholar
  10. Kursa M,Kowalczyk-Gajewska K, Lewandowski MJ, PetrykH (2018) Elastic-plastic properties of metal matrix composites: validation of meanfeld approaches. European Journal of Mechanics - A/Solids 68:53–66CrossRefGoogle Scholar
  11. Murakami S (2012) Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture. Springer-VerlagGoogle Scholar
  12. Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Ponter A, Hayhurst D (eds) Creep in Structures, Springer, Berlin, 3rd IUTAM Symposium on Creep in Structures, pp 422–444CrossRefGoogle Scholar
  13. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für angewandte Mathematik und Mechanik 9(1):49–58CrossRefGoogle Scholar
  14. Rys M, Egner H (2019) Energy equivalence based constitutive model of austenitic stainless steel at cryogenic temperatures. International Journal of Solids and Structures 164:52–65CrossRefGoogle Scholar
  15. Saanouni K, Forster C, Ben Hatira F (1994) On the inelastic flow with damage. International Journal of Damage Mechanics 3:140–169CrossRefGoogle Scholar
  16. Skrzypek JJ, Kuna-Ciskał H (2003) Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamics. In: Skrzypek JJ, Ganczarski AW (eds) Anisotropic Behaviour of Damaged Materials, Springer, Berlin, Heidelberg, Lecture Notes in Applied and Computational Mechanics, vol 9, pp 143–184CrossRefGoogle Scholar
  17. Voigt W (1889) Über die Beziehungen zwischen den beiden Elastizitätskonstanten isotroper Körper. Annalen der Physik 274(12):573–587CrossRefGoogle Scholar
  18. Wisniewska A, Hernik S, Liber-Knec A, Egner H (2019) Effective properties of composite material based on total strain energy equivalence. Composites Part B Engineering 166:213–220CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringInstitute of Applied Mechanics, Cracow University of TechnologyKrakówPoland

Personalised recommendations