Safety Demonstration of Autonomous Vehicles: A Review and Future Research Questions

  • Tchoya Florence KonéEmail author
  • Eric Bonjour
  • Eric Levrat
  • Frédérique Mayer
  • Stéphane Géronimi
Conference paper


The safety demonstration and validation of Autonomous vehicles (AVs) remains a challenging activity. In this paper, we firstly review what those challenges are and how they affect the safety validation of the AV. Then, we particularly focus on the simulation-based validation process, which seems to be inevitable among the recommended safety validation approaches. We show what is actually done and required in terms of scenarios generation, their assessment taking into account uncertainty and the simulation architecture to test and validate them. Finally, we end our review by summarizing key research questions that need to be addressed to help with this safety validation issue.



This work has been carried out under the financial support of the French National Association of Research and Technology (ANRT in French – convention CIFRE N° 2017/1246) as well as Groupe PSA.


  1. 1.
  2. 2.
    Kalra, N., Paddock, S.M.: Driving to Safety. RAND Corp. (2014).
  3. 3.
    Raffaëlli, L., Vallée, F., Fayolle, G., et al.: Facing ADAS validation complexity with usage oriented testing. In: ERTS (2016).
  4. 4.
    Alexander, L., Allen, S., Bindoff, N.L.: Handbook of Intelligent Vehicles, vol. 1 (2013).
  5. 5.
    Li, Q., Chen, L., Li, M., Shaw, S.L., Nüchter, A.: A sensor-fusion drivable-region and lane-detection system for autonomous vehicle navigation in challenging road scenarios. IEEE Trans. Veh. Technol. 63(2), 540–555 (2014). Scholar
  6. 6.
    Liu, W., Weng, Z., Chong, Z., et al.: Autonomous vehicle planning system design under perception limitation in pedestrian environment. In: CIS-RAM, pp. 159–166 (2015).
  7. 7.
    Petti, S., Bank, E.I., Fraichard, T.: Safe motion planning in dynamic environments, September 2005 (2014).
  8. 8.
    Zhao, L., Arbaretier, E., Tlig, M., et al.: Validations par Virtualisation et Simulation: de nouveaux champs méthodologiques et techniques pour une ingénierie de conception sûre des systèmes autonomes (2019)Google Scholar
  9. 9.
    Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), (2016). Scholar
  10. 10.
    Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary challenge. IEEE Intell. Transp. Syst. Mag. 9(1), 90–96 (2017). Scholar
  11. 11.
    Duan, J., Gao, F., He, Y.: Test scenario design for intelligent driving system, August 2018.
  12. 12.
    Geng, X., Liang, H., Yu, B., Zhao, P., He, L., Huang, R.: A scenario-adaptive driving behavior prediction approach to urban autonomous driving. Appl. Sci. 7(4), 426 (2017). Scholar
  13. 13.
    Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles (2017).
  14. 14.
    Geyer, S., Kienle, M., Franz, B., et al.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. IET Intell. Transp. Syst. 8(3), 183–189 (2013). Scholar
  15. 15.
    Bach, J., Otten, S., Sax, E.: Model based scenario specification for development and test of automated driving functions. In: Intelligent Vehicles Symposium Proceedings, pp. 1149–1155, August 2016.
  16. 16.
    Zhou, J., Re, L.: Reduced complexity safety testing for ADAS & ADF. IFAC-PapersOnLine 50, 5985–5990 (2017). Scholar
  17. 17.
    Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC 2015 (2015).
  18. 18.
    Dickmanns, E.D.: Dynamic vision for perception and control of motion (2007).
  19. 19.
    Wachenfeld, W., Winner, H., Gerdes, J.C., et al.: Use cases for autonomous driving. In: Autonomous Driving. Technical, Legal and Social Aspects, pp. 519–521 (2016). Scholar
  20. 20.
    Wilbrink, M., Schieben, A., Markowski, R., et al.: Designing cooperative interaction of automated vehicles with other road users in mixed traffic environments. Definition of interACT use cases and scenarios (1), 0–73 (2017)Google Scholar
  21. 21.
    Weidl, G., Breuel, G.: Overall probabilistic framework for modeling and analysis of intersection situations. In: Networked Vehicles (2012). Accessed 18 Oct 2017CrossRefGoogle Scholar
  22. 22.
    Merdrignac, P.: Système coopératif de perception et de communication pour la protection des usagers vulnérables (2015)Google Scholar
  23. 23.
    Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles (2018).
  24. 24.
    Lopez, I., Sarigul-Klijn, N.: A review of uncertainty in flight vehicle structural damage monitoring, diagnosis and control: challenges and opportunities. Prog. Aerosp. Sci. 46(7), 247–273 (2010). Scholar
  25. 25.
    Althoff, D., Weber, B., Wollherr, D., Buss, M.: Closed-loop safety assessment of uncertain roadmaps. Auton. Robots 40(2), 267–289 (2016). Scholar
  26. 26.
    Laugier, C., Paromtchik, I., Perrollaz, M., et al.: Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety. IEEE Intell. Transp. Syst. Mag. 3 (2011). Scholar
  27. 27.
    Xie, G., Zhang, X., Gao, H., Qian, L., Wang, J., Ozguner, U.: Situational assessments based on uncertainty-risk awareness in complex traffic scenarios. Sustainability 9(9), 1582 (2017). Scholar
  28. 28.
    Althoff, M.: Reachability analysis and its application to the safety assessment of autonomous cars (2010).
  29. 29.
    Hallerbach, S., Xia, Y., Eberle, U., Koester, F.: Simulation-based identification of critical scenarios for cooperative and automated vehicles, pp. 1–12 (2018). Scholar
  30. 30.
    De Galizia, A., Bracquemond, A., Arbaretier, E.: A scenario-based risk analysis oriented to manage safety critical situations in autonomous driving, pp. 1357–1362 (2018)Google Scholar
  31. 31.
    Sun, Y., Yang, H., Meng, F.: Research on an intelligent behavior evaluation system for unmanned ground vehicles, pp. 1–23 (2018). Scholar
  32. 32.
    DOT - Department of Transportation. A Framework for Automated Driving System Testable Cases and Scenarios, September 2018Google Scholar
  33. 33.
    Sarmiento, E., Leite, J.C.S.P., Almentero, E., Sotomayor Alzamora, G.: Test scenario generation from natural language requirements descriptions based on Petri-Nets. Electron. Notes Theor. Comput. Sci. 329, 123–148 (2016). Scholar
  34. 34.
    Mullins, G.E., Stankiewicz, P.G., Hawthorne, R.C., Gupta, S.K.: Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles. J. Syst. Softw. 137, 197–215 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tchoya Florence Koné
    • 1
    Email author
  • Eric Bonjour
    • 2
  • Eric Levrat
    • 3
  • Frédérique Mayer
    • 2
  • Stéphane Géronimi
    • 4
  1. 1.Université de Lorraine/Groupe PSANancyFrance
  2. 2.Université de Lorraine, laboratoire ERPINancyFrance
  3. 3.Université de Lorraine, Laboratoire CRAN, UMR CNRS 7039, Faculté des Sciences et TechnologiesVandoeuvre les NancyFrance
  4. 4.Groupe PSA, Vélizy AVélizy-Villacoublay CedexFrance

Personalised recommendations