Advertisement

A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation

  • Anne CollinEmail author
  • Afreen Siddiqi
  • Yuto Imanishi
  • Yukti Matta
  • Taisetsu Tanimichi
  • Olivier de Weck
Conference paper

Abstract

Understanding and quantifying the performance of sensing architectures on autonomous vehicles is a necessary step towards certification. However, once this evaluation can be performed, the combinatorial number of potential sensors on the vehicle limits the efficiency of a design tradespace exploration. Several figures of merit emerge when choosing a sensor suite; its performance for a specific autonomy task, its monetary cost, energy consumption, and contribution to the latency of the entire system. In this paper, we present formulations to evaluate a sensor combination across these dimensions for the localization and mapping task, as well as a method to enumerate architectures around the Pareto Front efficiently. We find that, on a benchmarked environment for this task, combinations with LiDARs are situated on the Pareto Front.

Notes

Acknowledgements

The authors would like to thank Antonio Terán Espinoza, Dr. Vasileios Tzoumas, and Professor Luca Carlone, from MIT.

References

  1. 1.
    Koopman, P., Wagner, M.: IEEE Intell. Transp. Syst. Mag. 9(1), 90 (2017).  https://doi.org/10.1109/MITS.2016.2583491CrossRefGoogle Scholar
  2. 2.
    Crawley, E., Weck, O.D., Eppinger, S., Magee, C., Moses, J., Seering, W.: MIT Engineering Systems Symposium, Cambridge, p. 30 (2004). http://esd.mit.edu/symposium/pdfs/monograph/uncertainty.pdf
  3. 3.
    Selva, D., Cameron, B., Crawley, E.: Syst. Eng. 19(6), 477 (2016).  https://doi.org/10.1002/sys.21370. http://doi.wiley.com/10.1002/sys.21370CrossRefGoogle Scholar
  4. 4.
    Zheng, B., Liang, H., Zhu, Q., Yu, H., Lin, C.W.: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), vol. 2016, pp. 53–58. IEEE, September 2016.  https://doi.org/10.1109/ISVLSI.2016.126. http://ieeexplore.ieee.org/document/7560172/
  5. 5.
    Meng, H., Zhang, W.B.: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 317–321. IEEE (2017).  https://doi.org/10.1109/IVS.2017.7995738, http://ieeexplore.ieee.org/document/7995738/
  6. 6.
    Collin, A., Teran Espinoza, A.: 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES) (ICVES 2018), Madrid, Spain (2018)Google Scholar
  7. 7.
    Ross, A.M., Hastings, D.E.: INCOSE International Symposium, vol. 15, no. 1, p. 1706 (2005).  https://doi.org/10.1002/j.2334-5837.2005.tb00783.x. http://doi.wiley.com/10.1002/j.2334-5837.2005.tb00783.xCrossRefGoogle Scholar
  8. 8.
  9. 9.
    Jo, K., Jo, Y., Suhr, J.K., Jung, H.G., Member, S.: IEEE Trans. Intell. Transp. Syst. 16(6), 3377 (2015).  https://doi.org/10.1109/TITS.2015.2450738CrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Vela, P.A.: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1183–1189. IEEE (2018).  https://doi.org/10.1109/IROS.2018.8593641. https://ieeexplore.ieee.org/document/8593641/
  11. 11.
  12. 12.
    Collin, A., Teran Espinoza, A.: arXiv preprint arXiv:1907.08541 (2019).  https://doi.org/10.13140/RG.2.2.11386.24001
  13. 13.
    Collin, A., Siddiqi, A., Yuto, I., Rebentisch, E., Tanimichi, T., De Weck, O.L.: Submitted (2018)Google Scholar
  14. 14.
    Imanishi, Y., Collin, A., Siddiqi, A., Rebentisch, E., Tanimichi, T., Matta, Y.: SAE International, pp. 1–12 (2019).  https://doi.org/10.4271/2019-01-0473. https://www.sae.org/content/2019-01-0473/
  15. 15.
    Chamov, I., Ranieri, J., Vetterli, M., de Weck, O.L.: 2016 IEEE Aerospace Conference, pp. 1–8. IEEE (2016).  https://doi.org/10.1109/AERO.2016.7500713. http://ieeexplore.ieee.org/document/7500713/
  16. 16.
  17. 17.
    Carlone, L., Karaman, S.: Attention and anticipation in fast visual-inertial navigation (2018)Google Scholar
  18. 18.
    Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: J. Water Resour. Plan. Manag. 134(6), 516 (2008).  https://doi.org/10.1061/(ASCE)0733-9496(2008)134:6(516). http://ascelibrary.org/doi/10.1061/CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Continental, ARS 408-21 Premium Long Range Radar Sensor 77 GHz. Technical report (2017)Google Scholar
  21. 21.
    Glennie, C., Lichti, D.D.: Remote Sens. 2(6), 1610 (2010).  https://doi.org/10.3390/rs2061610. http://www.mdpi.com/2072-4292/2/6/1610CrossRefGoogle Scholar
  22. 22.
    Velodyne: Velodyne LiDAR - Puck (2019). https://velodynelidar.com/vlp-16.html
  23. 23.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Carrillo, H., Reid, I., Castellanos, J.A.: IEEE International Conference on Robotics and Automation, pp. 2080–2087 (2012).  https://doi.org/10.1109/ICRA.2012.6224890
  26. 26.
    Chiu, H.P., Zhou, X.S., Carlone, L., Dellaert, F., Samarasekera, S., Kumar, R.: Proceedings - IEEE International Conference on Robotics and Automation, pp. 663–670 (2014).  https://doi.org/10.1109/ICRA.2014.6906925
  27. 27.
  28. 28.
    Lin, S.C., Zhang, Y., Hsu, C.H., Skach, M., Haque, M.E., Tang, L., Mars, J.: Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS 2018, pp. 751–766 (2018).  https://doi.org/10.1145/3173162.3173191. http://dl.acm.org/citation.cfm?doid=3173162.3173191
  29. 29.
    Tzoumas, V., Jadbabaie, A., Pappas, G.J.: 2016 American Control Conference (ACC), vol. 2016, pp. 191–196. IEEE, July 2016.  https://doi.org/10.1109/ACC.2016.7524914. http://ieeexplore.ieee.org/document/7524914/
  30. 30.
    Nemhauser, G.L., Wolsey, L.A., Nemhausert, G.L.: Source Math. Oper. Res. 3(3), 177 (1978).  https://doi.org/10.1287/moor.3.3.177. http://www.jstor.org/stable/3689488CrossRefGoogle Scholar
  31. 31.
  32. 32.
    Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design. Cambridge University Press, Cambridge (2000).  https://doi.org/10.1017/CBO9780511626418. http://ebooks.cambridge.org/ref/id/CBO9780511626418CrossRefzbMATHGoogle Scholar
  33. 33.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2007, p. 420. ACM Press, New York (2007).  https://doi.org/10.1145/1281192.1281239. http://portal.acm.org/citation.cfm?doid=1281192.1281239

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anne Collin
    • 1
    Email author
  • Afreen Siddiqi
    • 1
  • Yuto Imanishi
    • 2
  • Yukti Matta
    • 3
  • Taisetsu Tanimichi
    • 4
  • Olivier de Weck
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Hitachi America, Ltd.Farmington HillsUSA
  3. 3.Hitachi Automotive Systems Americas, Inc.Farmington HillsUSA
  4. 4.Hitachi Automotive Systems, Ltd.HitachinakaJapan

Personalised recommendations