WBAN Radio Channel Characteristics Between the Endoscope Capsule and on-Body Antenna
Abstract
This paper presents a study on the radio channel characteristics between an endoscope capsule and an on-body antenna in different parts of the small intestine with different on-body antenna location options. The study is conducted using finite integration technique based electromagnetic simulation software CST and one of its anatomical voxels. An endoscope capsule model with a dipole antenna is set inside different areas of the small intestine of the voxel model. A recently published highly-directive on-body antenna designed for on-in-body communications is used in the evaluations. Different rotation angles of the capsule are also considered both with a layer model and a voxel model. It is found that radio channel characteristics vary remarkably depending on the antenna location in the small intestine and location of the on-body antenna. Thus, the on-body antennas should be located carefully to ensure coverage over the whole intestine area. However, the path loss does not only depend on the distance between a capsule and the on-body antenna but also on the tissues between the capsule and on-body antennas. Furthermore, orientation of the capsule has also strong impact when linearly polarized antennas are used.
Keywords
Capsule endoscopy Directive antenna Gastrointestinal monitoring Implant communications Ultra wideband Wireless Body Area NetworksNotes
Acknowledgements
This research has been financially supported by the project WBAN Communications in the Congested Environments and in part by Academy of Finland 6Genesis Flagship (grant 318927). Ilkka Virtanen, Timo Mäkinen, and Jari Sillanpää from University of Oulu deserve acknowledgement for their help to enable the exhaustive simulations. Dr. Marko Sonkki from CWC, University of Oulu, is acknowledged for his participation on the on-body antenna design.
References
- 1.Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)CrossRefGoogle Scholar
- 2.Neumann, H., Fry, L.C., Nägela, A., Neurath, M.F.: Wireless capsule endoscopy of the small intestine: a review with future directions. Curr. Opin. Gastroenterol. 30(5), 463–471 (2014)CrossRefGoogle Scholar
- 3.Ara, P., Yu, K., Cheng, S., Dutkiewicz, E., Heimlich, M.C.: Human abdomen path-loss modeling and location estimation of wireless capsule endoscope using round-trip propagation loss. IEEE Sens. J. 18(8), 3266–3277 (2018)CrossRefGoogle Scholar
- 4.Chavez-Santiago, R., Wang, J., Balasinham, I.: The ultra wideband capsule endoscope. In: International Conference on Ultra Wideband (2013)Google Scholar
- 5.Stoa, S., Chavez-Santiago, R., Balasinham, I.: An ultra wideband communication channel model for capsule endoscopy. In: ISABEL 2014 (2014)Google Scholar
- 6.IEEE Standard for Local and metropolitan area networks _Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6-2012, pp. 1–271 (2012)Google Scholar
- 7.Särestöniemi, M., Pomalaza-Raez, C., Berg, M., Kissi, C., Hämäläinen, M., Iinatti, J.: In-body power distribution for abdominal monitoring and implant communications systems, ISWCS, September 2019Google Scholar
- 8.Särestöniemi, M., Pomalaza-Raez, C., Berg, M., Kissi, C., Hämäläinen, M., Iinatti, J.: Fat in the abdomen as a propagation medium in WBAN applications, Bodynets 2019 (2019)Google Scholar
- 9.Khaleghi, A., Chávez-Santiago, R., Liang, X., Balasingham, I., Leung, V.C.M., Ramstad, T.A.: On ultra wideband channel modeling for in-body communications. In: Proc. IEEE International Symposium on Wireless Pervasive Computing (ISWPC), 5–7 May 2010Google Scholar
- 10.Teshome, A., Kibret, B., Lai, D.T.H.: A review of implant communication technology in WBAN, progresses and challenges. IEEE Rev. Biomed. Eng. 12, 88–99 (2018)CrossRefGoogle Scholar
- 11.Leelatien, P., Ito, K., Saito, K., Sharma, M., Alomainy, A.: Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication. IEEE J. Electromagnet. RF Microwaves Med. Biol. 2, 94–101 (2018)CrossRefGoogle Scholar
- 12.Asan, N.B., et al.: Intra-body microwave communication through adipose tissue. Healthc. Technol. Lett. 4, 115–121 (2017)CrossRefGoogle Scholar
- 13.Asan, N.B., et al.: Characterization of fat channel for intra-body communication at R-band frequencies. MDPI Sens. 18(9) (2018)Google Scholar
- 14.Särestöniemi, M., et al.: Measurement and simulation based study on the UWB channel characteristics on the abdomen area. In: ISMICT 2019 (2019)Google Scholar
- 15.Särestöniemi, M., Kissi, C., Pomalaza-Raez, C., Hämäläinen, M., Iinatti, J.: Impact of the antenna-body distance on the UWB on-body channel characteristics. In: ISMICT 2019 (2019)Google Scholar
- 16.Särestöniemi, M., Kissi, C., Pomalaza Raez, C., Hämäläinen, M., Iinatti, J.: Propagation and UWB channel characteristics on human abdomen area. In: EUCAP 2019 (2019)Google Scholar
- 17.Li, J., Nie, Z., Liu, Y., Wang, L., Hao, Y.: Characterization of in-body radio channels for wireless implants. IEEE Sens. J. 17(5), 1528–1537 (2017)CrossRefGoogle Scholar
- 18.Kissi, C., Särestöniemi, M., Raez, C.P., Sonkki, M., Srifi, M.N.: Low-UWB directive antenna for wireless capsule endoscopy localization. In: BodyNets 2018 (2018)Google Scholar
- 19.Kissi, C., et al.: Low-UWB receiving antenna for WCE localization. In: ISMICT 2019 Conference (2019)Google Scholar
- 20.Kissi, C., et al.: Low-UWB antennas in vicinity to human body. In: ISMICT 2019 Conference (2019)Google Scholar
- 21.Kissi, C., et al.: High-directivity antenna for low-UWB body area networks applications. In: International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp. 1–6 (2018)Google Scholar
- 22.Bao, Z.: Comparative study of dual-polarized and circularly-polarized antennas at 2.45 GHz for ingestible capsules. Trans. Antennas Propag. 67(3), 1488–1500CrossRefGoogle Scholar
- 23.Lei, W., Guo, Y.-X.: Design of dual-polarized wideband conformal loop antenna for capsule endoscopy systems (2017)Google Scholar
- 24.Yazdandoost, K.Y.: Antenna for wireless capsule endoscopy at ultra wideband frequency. In: International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2017)Google Scholar
- 25.Lee, S.H., et al.: A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig. IEEE Trans. Biomed. Eng. 58, 1734–1741 (2011)CrossRefGoogle Scholar
- 26.CST Microwave Studio. http://www.cst.com
- 27.